Draft:Kolkata Paise Restaurant Problem 2
Submission declined on 10 July 2025 by WeWake (talk). Thank you for your submission, but the subject of this article already exists in Wikipedia. You can find it and improve it at Kolkata Paise Restaurant Problem instead.
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
| ![]() |
Comment: Please see Kolkata Paise Restaurant Problem WeWake (talk) 06:41, 10 July 2025 (UTC)
Another variant of the El Farol Bar problem is the Kolkata Paise Restaurant Problem (KPR),[1][2][3][4][5][6] named for the many cheap restaurants where laborers can grab a quick lunch, but may have to return to work hungry if their chosen restaurant is too crowded. Formally, a large number N of players each choose one of a large number n of restaurants, typically N = n (while in the El Farol Bar Problem, n = 2, including the stay-home option). At each restaurant, one customer at random is served lunch (payoff = 1) while all others lose (payoff = 0). The players do not know each others' choices on a given day, but the game is repeated daily, and the history of all players' choices is available to everyone. Optimally, each player chooses a different restaurant, but this is practically impossible without coordination, resulting in both hungry customers and unattended restaurants wasting capacity.[citation needed]
In a similar problem, there are hospital beds in every locality, but patients are tempted to go to prestigious hospitals out of their district. However, if too many patients go to a prestige hospital, some get no hospital bed at all, while additionally wasting the unused beds at their local hospitals.[7] Strategies are evaluated based on their aggregate payoff and/or the proportion of attended restaurants (utilization ratio). A leading stochastic strategy, with utilization ~0.79, gives each customer a probability p of choosing the same restaurant as yesterday (p varying inversely with the number of players who chose that restaurant yesterday), while choosing among other restaurants with uniform probability. This is a better result than deterministic algorithms or simple random choice (noise trader), with utilization fraction 1 - 1/e ≈ 0.63.[8] Increased utilization for customers having allowance for local optimization search using Traveling Salesman Problem type algorithms have also been studied.[9] Extensions of KPR for on-call car hire problems have been explored in.[10][11] Stability of the KPR, induced by the introduction of dining clubs have also studied.[12]
Extensions to quantum games for three player KPR have been studied;[13][14] see[15] for a recent review.
References
[edit]- ^ A. S. Chakrabarti; B. K. Chakrabarti; A. Chatterjee; M. Mitra (2009). "The Kolkata Paise Restaurant problem and resource utilization". Physica A. 388 (12): 2420–2426. arXiv:0711.1639. Bibcode:2009PhyA..388.2420C. doi:10.1016/j.physa.2009.02.039. S2CID 53310941.
- ^ Asim Ghosh, Bikas K. Chakrabarti. "Kolkata Paise Restaurant (KPR) Problem". Wolfram Alpha.
- ^ A. Ghosh; D. D. Martino; A. Chatterjee; M. Marsili; B. K. Chakrabarti (2012). "Phase transition in crowd dynamics of resource allocation". Physical Review E. 85 (2): 021116. arXiv:1109.2541. Bibcode:2012PhRvE..85b1116G. doi:10.1103/physreve.85.021116. PMID 22463162. S2CID 26159915.
- ^ Frédéric Abergel; Bikas K. Chakrabarti; Anirban Chakraborti; Asim Ghosh (2013). Econophysics of Systemic Risk and Network Dynamics (PDF). New Economic Windows. Bibcode:2013esrn.book.....A. doi:10.1007/978-88-470-2553-0. ISBN 978-88-470-2552-3.
- ^ A. Chakraborti; D. Challet; A. Chatterjee; M. Marsili; Y.-C. Zhang; B. K. Chakrabarti (2015). "Statistical Mechanics of Competitive Resource Allocation using Agent-Based Models". Physics Reports. 552: 1–25. arXiv:1305.2121. Bibcode:2015PhR...552....1C. doi:10.1016/j.physrep.2014.09.006. S2CID 42076636.
- ^ Bikas K Chakrabarti; Arnab Chatterjee; Asim Ghosh; Sudip Mukherjee; Boaz Tamir (27 July 2017). Econophysics of the Kolkata Restaurant Problem and Related Games: Classical and Quantum Strategies for Multi-agent, Multi-choice Repetitive Games. Springer. ISBN 978-3-319-61351-2.
- ^ A. Ghosh; A. Chatterjee; M. Mitra; B. K. Chakrabarti (2010). "Statistics of the Kolkata Paise Restaurant problem". New Journal of Physics. 12 (7): 075033. arXiv:1003.2103. Bibcode:2010NJPh...12g5033G. doi:10.1088/1367-2630/12/7/075033.
- ^ A. Sinha; B. K. Chakrabarti (2020). "Phase transition in the Kolkata Paise Restaurant problem". Chaos. 30 (8): 083116. arXiv:1905.13206. Bibcode:2020Chaos..30h3116S. doi:10.1063/5.0004816. PMID 32872841.
- ^ K. Kastampolidou; C. Papalitsas; T. Andronikos (2022). "The Distributed Kolkata Paise Restaurant Game". Games. 13 (3): 33. doi:10.3390/g13030033.
- ^ L. Martin (2017). "Extending Kolkata Paise Restaurant problem to dynamic matching in mobility markets". Junior Manag. Sci. 4: 1–34. doi:10.5282/jums/v4i1pp1-34.
- ^ L. Martin; P. Karaenke (2017). The vehicle for hire problem: a generalized Kolkata Paise Restaurant problem; Proc. Workshop on Information Technology and Systems (PDF).
- ^ A. Harlalka; A. Belmonte; C. Griffin (2023). "Stability of dining clubs in the Kolkata Paise Restaurant Problem with and without cheating". Physica A. 620 128767. arXiv:2302.14142. Bibcode:2023PhyA..62028767H. doi:10.1016/j.physa.2023.128767.
- ^ P. Sharif; H. Heydari (2012). "Strategies in a symmetric quantum Kolkata restaurant problem". AIP Conference Proceedings. 1508 (1): 492–496. arXiv:1212.6727. Bibcode:2012AIPC.1508..492S. doi:10.1063/1.4773171.
- ^ M. Ramzan (2013). "Three-player quantum Kolkata restaurant problem under decoherence". Quantum Inform. Process. 12 (1): 577. arXiv:1111.3913. Bibcode:2013QuIP...12..577R. doi:10.1007/s11128-012-0405-8.
- ^ B. K. Chakrabarti; A. Rajak; A. Sinha (2022). "Stochastic Learning in Kolkata Paise Restaurant Problem: Classical and Quantum Strategies". Front. Artif. Intell. 5: 874061. doi:10.3389/frai.2022.874061. PMC 9181993. PMID 35692940.