Visualization of gradient descent with one flow line Gradient flow of the Yang–Mills–Higgs action functional
In differential geometry , the Yang–Mills–Higgs flow is a gradient flow described by the Yang–Mills–Higgs equations , hence a method to describe a gradient descent of the Yang–Mills–Higgs action functional. Simply put, the Yang–Mills–Higgs flow is a path always going in the direction of steepest descent, similar to the path of a ball rolling down a hill. This helps to find critical points , called Yang–Mills–Higgs pairs , which solve the Yang–Mills–Higgs equations, as well as to study their stability . Illustratively, they are the points on the hill on which the ball can rest.
The Yang–Mills–Higgs flow is named after Yang Chen-Ning , Robert Mills and Peter Higgs with the former two having formulated the underlying Yang–Mills theory in 1954 and the latter having proposed the coupling to the Higgs field in 1964.
Let
G
{\displaystyle G}
be a compact Lie group with Lie algebra
g
{\displaystyle {\mathfrak {g}}}
and
E
↠
B
{\displaystyle E\twoheadrightarrow B}
be a principal
G
{\displaystyle G}
-bundle with a compact orientable Riemannian manifold
B
{\displaystyle B}
having a metric
g
{\displaystyle g}
and a volume form
vol
g
{\displaystyle \operatorname {vol} _{g}}
. Let
Ad
(
E
)
:=
E
×
G
g
↠
B
{\displaystyle \operatorname {Ad} (E):=E\times _{G}{\mathfrak {g}}\twoheadrightarrow B}
be its adjoint bundle .
Ω
Ad
1
(
E
,
g
)
≅
Ω
1
(
B
,
Ad
(
E
)
)
{\displaystyle \Omega _{\operatorname {Ad} }^{1}(E,{\mathfrak {g}})\cong \Omega ^{1}(B,\operatorname {Ad} (E))}
is the space of connections , which are either under the adjoint representation
Ad
{\displaystyle \operatorname {Ad} }
invariant Lie algebra–valued or vector bundle –valued differential forms . Since the Hodge star operator
⋆
{\displaystyle \star }
is defined on the base manifold
B
{\displaystyle B}
as it requires the metric
g
{\displaystyle g}
and the volume form
vol
g
{\displaystyle \operatorname {vol} _{g}}
, the second space is usually used.
The Yang–Mills–Higgs action functional is given by:[ 1] [ 2]
YMH
:
Ω
1
(
B
,
Ad
(
E
)
)
×
Γ
∞
(
B
,
Ad
(
E
)
)
→
R
,
YMH
(
A
,
Φ
)
:=
∫
B
‖
F
A
‖
2
+
‖
d
A
Φ
‖
2
d
vol
g
≥
0.
{\displaystyle \operatorname {YMH} \colon \Omega ^{1}(B,\operatorname {Ad} (E))\times \Gamma ^{\infty }(B,\operatorname {Ad} (E))\rightarrow \mathbb {R} ,\operatorname {YMH} (A,\Phi ):=\int _{B}\|F_{A}\|^{2}+\|\mathrm {d} _{A}\Phi \|^{2}\mathrm {d} \operatorname {vol} _{g}\geq 0.}
Its first term is also called Yang–Mills action .
Hence the gradient of the Yang–Mills–Higgs action functional gives exactly the Yang–Mills–Higgs equations :
grad
(
YMH
)
(
A
,
Φ
)
1
=
δ
A
F
A
+
[
Φ
,
d
A
Φ
]
,
{\displaystyle \operatorname {grad} (\operatorname {YMH} )(A,\Phi )_{1}=\delta _{A}F_{A}+[\Phi ,\mathrm {d} _{A}\Phi ],}
grad
(
YMH
)
(
A
,
Φ
)
2
=
δ
A
d
A
Φ
.
{\displaystyle \operatorname {grad} (\operatorname {YMH} )(A,\Phi )_{2}=\delta _{A}\mathrm {d} _{A}\Phi .}
For an open interval
I
⊆
R
{\displaystyle I\subseteq \mathbb {R} }
, two
C
1
{\displaystyle C^{1}}
maps
α
:
I
→
Ω
1
(
B
,
Ad
(
E
)
)
{\displaystyle \alpha \colon I\rightarrow \Omega ^{1}(B,\operatorname {Ad} (E))}
and
φ
:
I
→
Γ
∞
(
B
,
Ad
(
E
)
)
{\displaystyle \varphi \colon I\rightarrow \Gamma ^{\infty }(B,\operatorname {Ad} (E))}
(hence continuously differentiable ) fulfilling:[ 3] [ 4]
α
′
(
t
)
=
−
grad
(
YMH
)
(
α
(
t
)
,
φ
(
t
)
)
1
=
−
δ
α
(
t
)
F
α
(
t
)
−
[
φ
(
t
)
,
d
α
(
t
)
φ
(
t
)
]
{\displaystyle \alpha '(t)=-\operatorname {grad} (\operatorname {YMH} )(\alpha (t),\varphi (t))_{1}=-\delta _{\alpha (t)}F_{\alpha (t)}-[\varphi (t),\mathrm {d} _{\alpha (t)}\varphi (t)]}
φ
′
(
t
)
=
−
grad
(
YMH
)
(
α
(
t
)
,
φ
(
t
)
)
2
=
−
δ
α
(
t
)
d
α
(
t
)
φ
(
t
)
{\displaystyle \varphi '(t)=-\operatorname {grad} (\operatorname {YMH} )(\alpha (t),\varphi (t))_{2}=-\delta _{\alpha (t)}\mathrm {d} _{\alpha (t)}\varphi (t)}
are a Yang–Mills–Higgs flow.
For a Yang–Mills–Higgs pair
(
A
,
Φ
)
∈
Ω
1
(
B
,
Ad
(
E
)
)
×
Γ
∞
(
B
,
Ad
(
E
)
)
{\displaystyle (A,\Phi )\in \Omega ^{1}(B,\operatorname {Ad} (E))\times \Gamma ^{\infty }(B,\operatorname {Ad} (E))}
, the constant path on it is a Yang–Mills–Higgs flow.
For a Yang–Mills–Higgs flow
(
α
,
φ
)
:
I
→
Ω
1
(
B
,
Ad
(
E
)
)
×
Γ
∞
(
B
,
Ad
(
E
)
)
{\displaystyle (\alpha ,\varphi )\colon I\rightarrow \Omega ^{1}(B,\operatorname {Ad} (E))\times \Gamma ^{\infty }(B,\operatorname {Ad} (E))}
one has:
(
YMH
∘
(
α
,
φ
)
)
′
(
t
)
=
−
∫
X
‖
α
′
(
t
)
‖
2
+
‖
φ
′
(
t
)
‖
2
d
vol
g
≤
0.
{\displaystyle (\operatorname {YMH} \circ (\alpha ,\varphi ))'(t)=-\int _{X}\|\alpha '(t)\|^{2}+\|\varphi '(t)\|^{2}\mathrm {d} \operatorname {vol} _{g}\leq 0.}
Hence
YMH
∘
(
α
,
φ
)
:
I
→
R
{\displaystyle \operatorname {YMH} \circ (\alpha ,\varphi )\colon I\rightarrow \mathbb {R} }
is a monotonically decreasing function. Since the Yang–Mills–Higgs action functional is always positive, a Yang–Mills–Higgs flow which is continued towards infinity must inevitably converge to vanishing derivatives and hence a Yang–Mills–Higgs pair according to the above equations.
For any pair
(
A
,
Φ
)
∈
Ω
1
(
B
,
Ad
(
E
)
)
×
Γ
∞
(
B
,
Ad
(
E
)
)
{\displaystyle (A,\Phi )\in \Omega ^{1}(B,\operatorname {Ad} (E))\times \Gamma ^{\infty }(B,\operatorname {Ad} (E))}
, there is a unique Yang–Mills–Higgs flow
(
α
,
φ
)
:
[
0
,
∞
)
→
Ω
1
(
B
,
Ad
(
E
)
)
×
Γ
∞
(
B
,
Ad
(
E
)
)
{\displaystyle (\alpha ,\varphi )\colon [0,\infty )\rightarrow \Omega ^{1}(B,\operatorname {Ad} (E))\times \Gamma ^{\infty }(B,\operatorname {Ad} (E))}
with
(
α
(
0
)
,
φ
(
0
)
)
=
(
A
,
Φ
)
{\displaystyle (\alpha (0),\varphi (0))=(A,\Phi )}
. Then
(
lim
t
→
∞
α
(
t
)
,
lim
t
→
∞
φ
(
t
)
)
{\displaystyle (\lim _{t\rightarrow \infty }\alpha (t),\lim _{t\rightarrow \infty }\varphi (t))}
is a Yang–Mills–Higgs pair.
For a stable Yang–Mills–Higgs pair
(
A
,
Φ
)
∈
Ω
1
(
B
,
Ad
(
E
)
)
×
Γ
∞
(
B
,
Ad
(
E
)
)
{\displaystyle (A,\Phi )\in \Omega ^{1}(B,\operatorname {Ad} (E))\times \Gamma ^{\infty }(B,\operatorname {Ad} (E))}
, there exists a neighborhood so that every unique Yang–Mills–Higgs flow
(
α
,
φ
)
:
[
0
,
∞
)
→
Ω
1
(
B
,
Ad
(
E
)
)
×
Γ
∞
(
B
,
Ad
(
E
)
)
{\displaystyle (\alpha ,\varphi )\colon [0,\infty )\rightarrow \Omega ^{1}(B,\operatorname {Ad} (E))\times \Gamma ^{\infty }(B,\operatorname {Ad} (E))}
with initial condition in it fulfills:
A
=
lim
t
→
∞
α
(
t
)
,
{\displaystyle A=\lim _{t\rightarrow \infty }\alpha (t),}
Φ
=
lim
t
→
∞
φ
(
t
)
.
{\displaystyle \Phi =\lim _{t\rightarrow \infty }\varphi (t).}
Ginzburg–Landau flow[ edit ]
A generalization of the Yang–Mills–Higgs flow is the Ginzburg–Landau flow , named after Vitaly Ginzburg and Lev Landau , with an additional potential term for the Higgs field.
^ Zhang 2020, Eq. (1.1)
^ Changpeng, Zhenghan & Zhang 2023, Eq. (1.2)
^ Zhang 2020, Eq. (1.3)
^ Changpeng, Zhenghan & Zhang 2023, Eq. (1.4)