Jump to content

User:Tomruen/List of symmetric cubic graphs

From Wikipedia, the free encyclopedia

In the mathematical field of graph theory, a graph G is symmetric or arc-transitive if, given any two ordered pairs of adjacent vertices and of G, there is an automorphism

such that

and [1]

A complete list of symmetric cubic graphs is well explored up to a certain number of vertices.

Combining the symmetry condition with the restriction that graphs be cubic (i.e. all vertices have degree 3) yields quite a strong condition, and such graphs are rare enough to be listed. They all have an even number of vertices. The Foster census and its extensions provide such lists.[2] The Foster census was begun in the 1930s by Ronald M. Foster while he was employed by Bell Labs,[3] and in 1988 (when Foster was 92[1]) the then current Foster census (listing all cubic symmetric graphs up to 512 vertices) was published in book form.[4] The list are cubic symmetric graphs with up to 1000 vertices[5][6] (ten of these are also distance-transitive; the exceptions are as indicated):

Generalized Petersen graphs

[edit]

7 symmetric cubic graphs are Generalized Petersen graphs, G(m,n), have 2m vertices: (4,1), (5,2), (8,3), (10,2), (10,3), (12,5), (24,5).

#C8.1 #C10.1 #C12.1 #C20.1 #C20.2 #C24.1 #C48.1
G(4,1)
{4}+{4}
G(5,2)
{5}+{5/2}
G(8,3)
{8}+{8/3}
G(10,2)
{10}+2{5}
G(10,3)
{10}+{10/3}
G(12,5)
{12}+{12/5}
G(24,5)
{24}+{24/5}

Cubical graph

Petersen graph

Möbius–Kantor graph

Dodecahedral graph

Desargues graph

Nauru graph

 

Cubic distance-transitive graphs

[edit]

There are only 12 cubic distance-transitive graphs.

#C4.1 #C6.1 #C8.1 #C10.1 #C14.1 #C18.1

Tetrahedral graph

Utility graph

Cubical graph

Petersen graph

Heawood graph

Pappus graph
#C20.1 #C20.2 #C28.1 #C30.1 #C90.1 #C102.1

Dodecahedral graph

Desargues graph

Coxeter graph

Tutte–Coxeter graph

Foster graph

Biggs-Smith graph

Hexagonal regular map embeddings

[edit]

Cubic toroidal graphs are hexagonal regular map of the form {6,3}b,c, with t=b2+bc+c2 = (b+c)2-bc, having 2t vertices, 3t edges, and t hexagonal cycles (Girth 6). they are bipartite graphs.[7] A hexagonal net can be drawn as a (b+c)×(b+c) array, and removing c array on the top corner.

When gcd(b,c)=1, they can expressed in LCF notation [n,-n]t. (2,0) is a special case.

b\c 0 1 2 3 4 5 6 7 8 9
2 #C8.1, [5,-5]4, t=3

Cubical graph
#C14.1, [5,-5]7, t=4

Utility graph
3 #C26.1, [7,-7]13, t=16-3

F26A graph
#C38.1, [15,-15]19, t=25-6
4 #C42.1, [9,-9]21, t=25-4
#C74.1, [21,-21]37, t=49-12
5 #C62.1, [11,-11]31, t=36-5
#C78.1, [33,-33]39, t=49-10
#C98.1, [37,-37]49, t=64-15
#C122.1
[n,-n]61, t=81-20
6 #C86.1, [13,-13]43, t=49-6
#C182.1
[n,-n]91, t=121-30
7 #C114.1, [15,-15]57, t=64-7
#C134.1
[n,-n]67, t=81-14
#C158.1
[n,-n]79, t=100-21
#C186.1
[n,-n]93, t=121-28
#C218.1
[n,-n]109, t=144-35
#C254.1
[n,-n]127, t=169-42
8 #C146.1, [17,-17]73, t=81-8
#C194.1
[n,-n]97, t=121-24
#C258.1
[n,-n]129, t=169-40
#C338.1
[n,-n]169, t=225-56
9 #C182.1, [19,-19]91, t=100-9
#C206.1
[n,-n]103, t=121-18
#C266.1
[n,-n]133, t=169-36
#C302.1
[n,-n]151, t=196-45
#C386.1
[n,-n]193, t=256-63
#C434.1
[n,-n]217, t=17*17=289-72
10 #C222.1, [21,-21]111, t=121-10
#C278.1
[n,-n]139, t=169-30
#C438.1
[n,-n]219, t=289-60
#C542.1
[n,-n]271

Complete list 4-1000 vertices

[edit]

A bipartite symmetric cubic with 2n vertices can make a self-dual (n3) configuration, related by the Levi graph operation. The configuration will have half as many automorphisms as the cubic graph since bipartite interchange only possible after making the Levi graph.

Symmetric cubic graphs to 1000 vertices[8]
Foster
census
Vert. Edge Diam Girth s-arc
trans
Aut Aut/V Map Diagram1 Diagram2 Graph Bipartite Dist.trans
C4.1 4 6 1 3 2 24 6
{4,3}/2
Complete graph K4, Möbius ladder M4
Tetrahedral graph {3,3}, Hemicube graph {4,3}/2, HOG74, LCF=[2]^2
no yes
C6.1 6 9 2 4 3 72 12
{6,3}1,1
Utility graph, Complete bipartite graph K3,3
Möbius ladder M6, HOG84, LCF=[3]^3
Levi graph for symmetric configuration (33) and regular complex polygon 2{4}3
yes
C8.1 8 12 3 4 2 48 6
{6,3}2,0
G(4,1), Cube graph {4,3}, HOG1022, LCF=[3,-3]^4
Levi graph for symmetric configuration (43) or faces of a tetrahedron
yes
C10.1 10 15 2 5 3 120 12
{5,3}/2
G(5,2) Petersen graph, HOG462, hemi-dodecahedron graph no yes
C14.1 14 21 3 6 4 336 24
{6,3}2,1
Heawood graph, HOG1154, LCF=[5,-5]^7
Levi graph for Fano plane symmetric configuration (73)
yes
C16.1 16 24 4 6 2 96 6
{6,3}4×2
G(8,3), Möbius–Kantor graph, HOG1229, LCF=[5,-5]^8
Levi graph for Möbius–Kantor configuration (83) and Möbius–Kantor polygon 3{3}3
C18.1 18 27 4 6 3 216 12
{6,3}3,0
Pappus graph, HOG370, LCF=[5,7,-7,7,-7,-5]^3
Levi graph for Pappus configuration (93)1
yes
C20.1 20 30 5 5 2 120 6
{5,3}
G(10,2), Dodecahedron graph {5,3}, HOG1043, LCF=[10,7,4,-4,-7,10,-4,7,-7,4]^2 no yes
C20.2 20 30 5 6 3 240 12 G(10,3), Desargues graph, LCF=[5,-5,9,-9]^5
Levi graph for Desargues configuration (103)
yes
C24.1 24 36 4 6 2 144 6
{6,3}2,2
G(12,5), Nauru graph, HOG1234, LCF=[5,-9,7,-7,9,-5]^4
Levi graph for Coxeter or Nauru configuration (123)
C26.1 26 39 5 6 1 78 3
{6,3}3,1
F26A graph[6], LCF=[7,-7]^13
Levi graph for a symmetric (133) configuration
C28.1 28 42 4 7 3 336 12 Coxeter graph no yes
C30.1 30 45 4 8 5 1440 48 Tutte–Coxeter graph, LCF=[-13,-9,7,-7,9,13]^5
Levi graph for Cremona-Richmond_configuration (153)
yes
C32.1 32 48 5 6 2 192 6
{6,3}4,0
Dyck graph, LCF=[5,-5,13,-13]^8
Levi graph for a symmetric Dyck configuration (163) configuration
C38.1 38 57 5 6 1 114 3
{6,3}3,2
LCF=[15,-15]^19
Levi graph for a symmetric (193) configuration
C40.1 40 60 6 8 3 480 12 LCF=[15,9,-9,-15]^10
Levi graph for a symmetric (203) configuration
C42.1 42 63 6 6 1 126 3
{6,3}4,1
LCF=[9,-9]^21
Levi graph for a symmetric (213) configuration
C48.1 48 72 6 8 2 288 6 Double Nauru graph, G(24,5), LCF=[-7,9,19,-19,-9,7]^8
Levi graph for a symmetric (243) configuration
C50.1 50 75 7 6 2 300 6
{6,3}5,0
LCF=[-21,-19,19,-19,19,-19,19,21,-21,21]^5
Levi graph for a symmetric (253) configuration
C54.1 54 81 6 6 2 324 6
{6,3}3,3
LCF=[-13,-11,11,-11,11,13]^9
Levi graph for a symmetric (273) configuration
C56.1 56 84 7 6 1 168 3
{6,3}4,2
LCF=[-13,-11,11,13]^14
Levi graph for a symmetric (283) configuration
C56.2 56 84 6 7 2 336 6
{7,3}2,2
Cubic Klein graph, LCF=[-28,-19,-12,-18,12,15,-15,-12,18,12,19,-28,-18,18]^4 no
C56.3 56 84 7 8 3 672 12 Levi graph for a symmetric (283) configuration
C60.1 60 90 5 9 2 360 6 LCF=[12,-17,-12,25,17,-26,-9,9,-25,26]^6 no
C62.1 62 93 7 6 1 186 3
{6,3}5,1
LCF=[11,-11]^31
Levi graph for a symmetric (313) configuration
C64.1 64 96 6 8 2 384 6 LCF=[23,-11,-29,25,-25,29,11,-23]^8
Levi graph for a symmetric (323) configuration
C72.1 72 108 8 6 2 432 6
{6,3}6,0
LCF=[-31,9,-5,5,-9,31]^12
Levi graph for a symmetric (363) configuration
C74.1 74 111 7 6 1 222 3 {6,3}4,3 LCF=[-21,21]^37
Levi graph for a symmetric (373) configuration
C78.1 78 117 8 6 1 234 3 {6,3}5,2 LCF=[-33,33]^39
Levi graph for a symmetric (393) configuration
C80.1 80 120 8 10 3 960 12 LCF=[-25,9,-9,25]^20
Levi graph for a symmetric (403) configuration
C84.1 84 126 7 7 2 504 6 no
C86.1 86 129 9 6 1 258 3 {6,3}6,1 LCF=[-13,13]^43
Levi graph for a symmetric (433) configuration
C90.1 90 135 8 10 5 4320 48 Foster graph, LCF=[17,-9,37,37,9,-17]^15
Levi graph for a symmetric Foster configuration (453) configuration
yes
C96.1 96 144 8 6 2 576 6 {6,3}4,4 LCF=[-41,-39,39,41,-41,41,-41,41]^12
Levi graph for a symmetric (483) configuration
C96.2 96 144 7 8 3 1152 12 LCF=[-45,-33,-15,45,-39,-21,-45,39,21,45,-15,15,-45,39,-39,45,33,27,-45,15,-27,45,-39,39]^4
Levi graph for a symmetric (483) configuration
C98.1 98 147 9 6 1 294 3 {6,3}5,3 LCF=[-37,37]^49
Levi graph for a symmetric (493) configuration
C98.2 98 147 9 6 2 588 6 {6,3}7,0 LCF=[-43,-41,41,-41,41,-41,41,-41,41,-41,41,43,-43,43]^7
Levi graph for a symmetric (493) configuration
C102.1 102 153 7 9 4 2448 24 Biggs-Smith graph no yes
C104.1 104 156 9 6 1 312 3 {6,3}6,2 Levi graph for a symmetric (523) configuration
C108.1 108 162 7 9 2 648 6 no
C110.1 110 165 7 10 3 1320 12 Levi graph for a symmetric (553) configuration
C112.1 112 168 7 10 1 336 3 Levi graph for a symmetric (563) configuration
C112.2 112 168 7 8 2 672 6 Levi graph for a symmetric (563) configuration
C112.3 112 168 10 8 3 1344 12 Levi graph for a symmetric (553) configuration
C114.1 114 171 10 6 1 342 3 {6,3}7,1 Levi graph for a symmetric (573) configuration
C120.1 120 180 8 8 2 720 6 Levi graph for a symmetric (603) configuration
C120.2 120 180 9 10 2 720 6 Levi graph for a symmetric (603) configuration
C122.1 122 183 9 6 1 366 3 {6,3}5,4 Levi graph for a symmetric (613) configuration
C126.1 126 189 10 6 1 378 3 {6,3}6,3 Levi graph for a symmetric (633) configuration
C128.1 128 192 11 6 2 768 6 {6,3}8,0 Levi graph for a symmetric (643) configuration
C128.2 128 192 8 10 2 768 6 Levi graph for a symmetric (643) configuration
C134.1 134 201 11 6 1 402 3 {6,3}7,2 Levi graph for a symmetric (673) configuration
C144.1 144 216 7 8 1 432 3 Levi graph for a symmetric (723) configuration
C144.2 144 216 8 10 2 864 6 Levi graph for a symmetric (723) configuration
C146.1 146 219 11 6 1 438 3 {6,3}8,1 Levi graph for a symmetric (733) configuration
C150.1 150 225 10 6 2 900 6 {6,3}5,5 Levi graph for a symmetric (753) configuration
C152.1 152 228 11 6 1 456 3 {6,3}6,4 Levi graph for a symmetric (763) configuration
C158.1 158 237 11 6 1 474 3 {6,3}7,3 Levi graph for a symmetric (793) configuration
C162.1 162 243 7 12 1 486 3 Levi graph for a symmetric (813) configuration
C162.2 162 243 12 6 2 972 6 {6,3}9,0 Levi graph for a symmetric (813) configuration
C162.3 162 243 8 12 3 1944 12 Levi graph for a symmetric (813) configuration
C168.1 168 252 7 12 1 504 3 Levi graph for a symmetric (843) configuration
C168.2 168 252 12 6 1 504 3 {6,3}8,2 Levi graph for a symmetric (843) configuration
C168.3 168 252 8 8 2 1008 6 no
C168.4 168 252 7 9 2 1008 6 no
C168.5 168 252 9 7 2 1008 6 no
C168.6 168 252 8 12 2 1008 6 Levi graph for a symmetric (843) configuration
C182.1 182 273 13 6 1 546 3 {6,3}6,5 Levi graph for a symmetric (913) configuration
C182.2 182 273 11 6 1 546 3 {6,3}9,1 Levi graph for a symmetric (913) configuration
C182.3 182 273 8 7 2 1092 6 no
C182.4 182 273 9 12 3 2184 12 Levi graph for a symmetric (913) configuration
C186.1 186 279 12 6 1 558 3 {6,3}7,4 Levi graph for a symmetric (933) configuration
C192.1 192 288 10 10 2 1152 6 Levi graph for a symmetric (963) configuration
C192.2 192 288 8 12 2 1152 6 Levi graph for a symmetric (963) configuration
C192.3 192 288 12 8 3 2304 12 Levi graph for a symmetric (963) configuration
C194.1 194 291 13 6 1 582 3 {6,3}8,3 Levi graph for a symmetric (1473) configuration
C200.1 200 300 13 6 2 1200 6 {6,3}10,0 Levi graph for a symmetric (1503) configuration
C204.1 204 306 9 12 4 4896 24 Levi graph for a symmetric (1023) configuration
C206.1 206 309 13 6 1 618 3 {6,3}9,2 Levi graph for a symmetric (1033) configuration
C208.1 208 312 9 10 1 624 3 Levi graph for a symmetric (1043) configuration
C216.1 216 324 9 10 2 1296 6 Levi graph for a symmetric (1083) configuration
C216.2 216 324 8 12 2 1296 6 Levi graph for a symmetric (1083) configuration
C216.3 216 324 12 6 2 1296 6 {6,3}6,6 Levi graph for a symmetric (1083) configuration
C218.1 218 327 13 6 1 654 3 {6,3}7,5 Levi graph for a symmetric (1093) configuration
C220.1 220 330 9 10 2 1320 6 Levi graph for a symmetric (1103) configuration
C220.2 220 330 9 10 2 1320 6 no
C220.3 220 330 10 10 3 2640 12 Levi graph for a symmetric (1103) configuration
C222.1 222 333 14 6 1 666 3 {6,3}10,1 Levi graph for a symmetric (1113) configuration
C224.1 224 336 13 6 1 672 3 {6,3}8,4 Levi graph for a symmetric (1123) configuration
C224.2 224 336 9 12 2 1344 6 Levi graph for a symmetric (1123) configuration
C224.3 224 336 10 12 3 2688 12 Levi graph for a symmetric (1123) configuration
C234.1 234 351 14 6 1 702 3 {6,3}9,3 Levi graph for a symmetric (1173) configuration
C234.2 234 351 8 12 5 11232 48 no
C240.1 240 360 10 9 2 1440 6 Levi graph for a symmetric (1203) configuration
C240.2 240 360 11 10 2 1440 6 no
C240.3 240 360 10 8 2 1440 6 Levi graph for a symmetric (1203) configuration
C242.1 242 363 15 6 2 1452 6 {6,3}11,0 Levi graph for a symmetric (1213) configuration
C248.1 248 372 15 6 1 744 3 {6,3}10,2 Levi graph for a symmetric (1243) configuration
C250.1 250 375 10 10 2 1500 6 Levi graph for a symmetric (1253) configuration
C254.1 254 381 13 6 1 762 3 {6,3}7,6 Levi graph for a symmetric (1273) configuration
C256.1 256 384 9 12 1 768 3 Levi graph for a symmetric (1283) configuration
C256.2 256 384 11 10 2 1536 6 Levi graph for a symmetric (1283) configuration
C256.3 256 384 10 10 2 1536 6 Levi graph for a symmetric (1283) configuration
C256.4 256 384 10 8 2 1536 6 Levi graph for a symmetric (1283) configuration
C258.1 258 387 14 6 1 774 3 {6,3}8,5
C266.1 266 399 15 6 1 798 3 {6,3}9,4
C266.2 266 399 15 6 1 798 3 {6,3}11,1
C278.1 278 417 15 6 1 834 3 {6,3}10,3
C288.1 288 432 16 6 2 1728 6 {6,3}12,0
C288.2 288 432 9 12 3 3456 12
C294.1 294 441 16 6 1 882 3 {6,3}11,2
C294.2 294 441 14 6 2 1764 6 {6,3}7,7
C296.1 296 444 15 6 1 888 3 {6,3}8,6
C302.1 302 453 15 6 1 906 3 {6,3}9,5
C304.1 304 456 11 10 1 912 3
C312.1 312 468 9 12 1 936 3
C312.2 312 468 16 6 1 936 3 {6,3}10,4
C314.1 314 471 17 6 1 942 3 {6,3}12,1
C326.1 326 489 17 6 1 978 3 {6,3}11,3
C336.1 336 504 12 10 1 1008 3
C336.2 336 504 12 12 1 1008 3
C336.3 336 504 9 12 2 2016 6
C336.4 336 504 13 8 2 2016 6
C336.5 336 504 10 8 2 2016 6
C336.6 336 504 12 12 2 2016 6
C338.1 338 507 15 6 1 1014 3 {6,3}8,7
C338.2 338 507 17 6 2 2028 6 {6,3}13,0
C342.1 342 513 16 6 1 1026 3 {6,3}9,6
C344.1 344 516 17 6 1 1032 3 {6,3}12,2
C350.1 350 525 17 6 1 1050 3 {6,3}10,5
C360.1 360 540 11 8 2 2160 6
C360.2 360 540 10 12 3 4320 12
C362.1 362 543 17 6 1 1086 3 {6,3}11,4
C364.1 364 546 12 7 2 2184 6 no
C364.2 364 546 11 7 2 2184 6 no
C364.3 364 546 10 12 2 2184 6
C364.4 364 546 9 12 2 2184 6 no
C364.5 364 546 9 12 2 2184 6
C364.6 364 546 13 7 2 2184 6 no
C364.7 364 546 12 12 3 4368 12
C366.1 366 549 18 6 1 1098 3 {6,3}13,1
C378.1 378 567 18 6 1 1134 3 {6,3}12,3
C378.2 378 567 10 12 1 1134 3
C384.1 384 576 16 6 2 2304 6 {6,3}8,8
C384.2 384 576 10 12 2 2304 6
C384.3 384 576 10 12 2 2304 6
C384.4 384 576 12 12 3 4608 12
C386.1 386 579 17 6 1 1158 3 {6,3}9,7
C392.1 392 588 17 6 1 1176 3 {6,3}10,6
C392.2 392 588 19 6 2 2352 6 {6,3}14,0
C398.1 398 597 19 6 1 1194 3 {6,3}13,2
C400.1 400 600 10 8 1 1200 3
C400.2 400 600 13 10 2 2400 6
C402.1 402 603 18 6 1 1206 3 {6,3}11,5
C408.1 408 612 10 9 2 2448 6 no
C408.2 408 612 10 9 3 4896 12 no
C416.1 416 624 19 6 1 1248 3 {6,3}12,4
C422.1 422 633 19 6 1 1266 3 {6,3}14,1
C432.1 432 648 12 8 1 1296 3
C432.2 432 648 10 12 1 1296 3
C432.3 432 648 12 10 2 2592 6
C432.4 432 648 12 12 2 2592 6
C432.5 432 648 14 10 2 2592 6
C434.1 434 651 17 6 1 1302 3 {6,3}9,8
C434.2 434 651 19 6 1 1302 3 {6,3}13,3
C438.1 438 657 18 6 1 1314 3 {6,3}10,7
C440.1 440 660 12 10 2 2640 6
C440.2 440 660 11 10 2 2640 6
C440.3 440 660 10 12 3 5280 12
C446.1 446 669 19 6 1 1338 3 {6,3}11,6
C448.1 448 672 13 10 1 1344 3
C448.2 448 672 11 7 1 1344 3 no
C448.3 448 672 10 14 2 2688 6
C450.1 450 675 20 6 2 2700 6 {6,3}15,0
C456.1 456 684 10 12 1 1368 3
C456.2 456 684 20 6 1 1368 3 {6,3}14,2
C458.1 458 687 19 6 1 1374 3 {6,3}12,5
C468.1 468 702 13 12 5 22464 48
C474.1 474 711 20 6 1 1422 3 {6,3}13,4
C480.1 480 720 11 12 2 2880 6
C480.2 480 720 15 9 2 2880 6 no
C480.3 480 720 10 12 2 2880 6 no
C480.4 480 720 10 10 2 2880 6
C482.1 482 723 21 6 1 1446 3 {6,3}15,1
C486.1 486 729 18 6 2 2916 6 {6,3}9,9
C486.2 486 729 12 12 2 2916 6
C486.3 486 729 12 12 3 5832 12
C486.4 486 729 12 12 3 5832 12
C488.1 488 732 19 6 1 1464 3 {6,3}10,8
C494.1 494 741 21 6 1 1482 3 {6,3}14,3
C494.2 494 741 19 6 1 1482 3
C496.1 496 744 15 10 1 1488 3
C500.1 500 750 12 10 2 3000 6 no
C504.1 504 756 10 9 1 1512 3 no
C504.2 504 756 20 6 1 1512 3 {6,3}12,6
C504.3 504 756 12 12 1 1512 3
C504.4 504 756 10 14 2 3024 6 no
C504.5 504 756 12 9 2 3024 6 no
C506.1 506 759 11 11 3 6072 12 no
C506.2 506 759 10 14 4 12144 24
C512.1 512 768 12 14 1 1536 3
C512.2 512 768 21 6 2 3072 6 {6,3}16,0
C512.3 512 768 11 12 2 3072 6
C512.4 512 768 12 10 2 3072 6
C512.5 512 768 11 12 2 3072 6
C512.6 512 768 12 8 2 3072 6
C512.7 512 768 10 12 2 3072 6
C518.1 518 777 21 6 1 1554 3 {6,3}13,5
C518.2 518 777 21 6 1 1554 3 {6,3}15,2
C536.1 536 804 21 6 1 1608 3 {6,3}14,4
C542.1 542 813 19 6 1 1626 3 {6,3}10,9
C546.1 546 819 22 6 1 1638 3 {6,3}11,8
C546.2 546 819 20 6 1 1638 3 {6,3}16,1
C554.1 554 831 21 6 1 1662 3 {6,3}12,7
C558.1 558 837 22 6 1 1674 3 {6,3}15,3
C566.1 566 849 21 6 1 1698 3 {6,3}13,6
C570.1 570 855 11 9 2 3420 6 no
C570.2 570 855 11 9 3 6840 12 no
C576.1 576 864 12 8 1 1728 3
C576.2 576 864 16 10 2 3456 6
C576.3 576 864 12 12 2 3456 6
C576.4 576 864 14 12 3 6912 12
C578.1 578 867 23 6 2 3468 6 {6,3}17,0
C582.1 582 873 22 6 1 1746 3 {6,3}14,5
C584.1 584 876 23 6 1 1752 3 {6,3}16,2
C592.1 592 888 15 10 1 1776 3
C600.1 600 900 12 12 2 3600 6
C600.2 600 900 20 6 2 3600 6 {6,3}10,10
C602.1 602 903 21 6 1 1806 3 {6,3}11,9
C602.2 602 903 23 6 1 1806 3 {6,3}15,4
C608.1 608 912 21 6 1 1824 3 {6,3}12,8
C614.1 614 921 23 6 1 1842 3 {6,3}17,1
C618.1 618 927 22 6 1 1854 3 {6,3}13,7
C620.1 620 930 10 15 4 14880 24 no
C624.1 624 936 16 10 1 1872 3
C624.2 624 936 12 14 1 1872 3
C626.1 626 939 23 6 1 1878 3 {6,3}16,3
C632.1 632 948 23 6 1 1896 3 {6,3}14,6
C640.1 640 960 12 10 3 7680 12
C648.1 648 972 12 12 1 1944 3
C648.2 648 972 13 12 1 1944 3
C648.3 648 972 10 12 2 3888 6
C648.4 648 972 12 12 2 3888 6
C648.5 648 972 14 12 2 3888 6
C648.6 648 972 24 6 2 3888 6 {6,3}18,0
C650.1 650 975 23 6 1 1950 3 {6,3}15,5
C650.2 650 975 11 12 5 31200 48
C654.1 654 981 24 6 1 1962 3 {6,3}17,2
C660.1 660 990 11 10 2 3960 6 no
C662.1 662 993 21 6 1 1986 3 {6,3}11,10
C666.1 666 999 22 6 1 1998 3 {6,3}12,9
C672.1 672 1008 12 12 1 2016 3
C672.2 672 1008 24 6 1 2016 3 {6,3}16,4
C672.3 672 1008 12 12 1 2016 3
C672.4 672 1008 12 8 2 4032 6 no
C672.5 672 1008 13 12 2 4032 6
C672.6 672 1008 12 12 2 4032 6
C672.7 672 1008 12 14 2 4032 6
C674.1 674 1011 23 6 1 2022 3 {6,3}13,8
C680.1 680 1020 10 12 2 4080 6 no
C680.2 680 1020 11 10 3 8160 12 no
C686.1 686 1029 25 6 1 2058 3 {6,3}14,7
C686.2 686 1029 23 6 1 2058 3 {6,3}18,1
C686.3 686 1029 12 12 2 4116 6
C688.1 688 1032 17 10 1 2064 3
C698.1 698 1047 25 6 1 2094 3 {6,3}17,3
C702.1 702 1053 24 6 1 2106 3 {6,3}15,6
C702.2 702 1053 14 12 1 2106 3
C720.1 720 1080 11 10 1 2160 3
C720.2 720 1080 12 8 1 2160 3
C720.3 720 1080 10 10 2 4320 6
C720.4 720 1080 12 8 2 4320 6
C720.5 720 1080 16 8 2 4320 6
C720.6 720 1080 12 12 3 8640 12
C722.1 722 1083 25 6 1 2166 3 {6,3}16,5
C722.2 722 1083 25 6 2 4332 6 {6,3}19,0
C726.1 726 1089 22 6 2 4356 6 {6,3}11,11
C728.1 728 1092 25 6 1 2184 3 {6,3}12,10
C728.2 728 1092 23 6 1 2184 3 {6,3}18,2
C728.3 728 1092 14 12 2 4368 6
C728.4 728 1092 13 12 2 4368 6
C728.5 728 1092 12 12 2 4368 6
C728.6 728 1092 12 12 2 4368 6
C728.7 728 1092 14 12 3 8736 12
C734.1 734 1101 23 6 1 2202 3 {6,3}13,9
C744.1 744 1116 13 12 1 2232 3
C744.2 744 1116 24 6 1 2232 3 {6,3}14,8
C746.1 746 1119 25 6 1 2238 3 {6,3}17,4
C750.1 750 1125 12 12 2 4500 6
C758.1 758 1137 25 6 1 2274 3 {6,3}15,7
C762.1 762 1143 26 6 1 2286 3 {6,3}19,1
C768.1 768 1152 12 12 1 2304 3
C768.2 768 1152 18 10 2 4608 6
C768.3 768 1152 12 14 2 4608 6
C768.4 768 1152 13 12 2 4608 6
C768.5 768 1152 12 12 2 4608 6
C768.6 768 1152 11 12 2 4608 6
C768.7 768 1152 11 12 2 4608 6
C774.1 774 1161 26 6 1 2322 3 {6,3}18,3
C776.1 776 1164 25 6 1 2328 3 {6,3}16,6
C784.1 784 1176 17 10 1 2352 3
C784.2 784 1176 19 10 2 4704 6
C794.1 794 1191 23 6 1 2382 3 {6,3}12,11
C798.1 798 1197 24 6 1 2394 3 {6,3}13,10
C798.2 798 1197 26 6 1 2394 3 {6,3}17,5
C800.1 800 1200 27 6 2 4800 6 {6,3}20,0
C806.1 806 1209 25 6 1 2418 3 {6,3}14,9
C806.2 806 1209 27 6 1 2418 3 {6,3}19,2
C816.1 816 1224 12 8 2 4896 6 no
C816.2 816 1224 12 9 2 4896 6 no
C816.3 816 1224 12 12 2 4896 6
C816.4 816 1224 12 9 2 4896 6 no
C816.5 816 1224 12 8 2 4896 6 no
C816.6 816 1224 11 12 2 4896 6
C816.7 816 1224 10 15 2 4896 6 no
C816.8 816 1224 12 9 2 4896 6 no
C816.9 816 1224 11 14 3 9792 12
C818.1 818 1227 25 6 1 2454 3 {6,3}15,8
C824.1 824 1236 27 6 1 2472 3 {6,3}18,4
C832.1 832 1248 19 10 1 2496 3
C834.1 834 1251 26 6 1 2502 3 {6,3}16,7
C840.1 840 1260 11 12 1 2520 3
C840.2 840 1260 11 10 2 5040 6
C842.1 842 1263 27 6 1 2526 3 {6,3}20,1
C854.1 854 1281 27 6 1 2562 3 {6,3}17,6
C854.2 854 1281 27 6 1 2562 3 {6,3}19,3
C864.1 864 1296 24 6 2 5184 6 {6,3}12,12
C864.2 864 1296 16 12 2 5184 6
C864.3 864 1296 14 12 2 5184 6
C864.4 864 1296 15 10 2 5184 6
C866.1 866 1299 25 6 1 2598 3 {6,3}13,11
C872.1 872 1308 25 6 1 2616 3 {6,3}14,10
C878.1 878 1317 27 6 1 2634 3 {6,3}18,5
C880.1 880 1320 12 10 2 5280 6
C880.2 880 1320 12 10 2 5280 6
C880.3 880 1320 12 14 3 10560 12
C882.1 882 1323 26 6 1 2646 3 {6,3}15,9
C882.2 882 1323 28 6 2 5292 6
C888.1 888 1332 14 12 1 2664 3
C888.2 888 1332 28 6 1 2664 3 {6,3}20,2
C896.1 896 1344 11 12 1 2688 3
C896.2 896 1344 27 6 1 2688 3 {6,3}16,8
C896.3 896 1344 13 12 1 2688 3
C896.4 896 1344 12 12 1 2688 3
C896.5 896 1344 14 14 2 5376 6
C906.1 906 1359 28 6 1 2718 3 {6,3}19,4
C912.1 912 1368 20 10 1 2736 3
C912.2 912 1368 12 14 1 2736 3
C914.1 914 1371 27 6 1 2742 3 {6,3}17,7
C926.1 926 1389 29 6 1 2778 3
C936.1 936 1404 28 6 1 2808 3 {6,3}18,6
C936.2 936 1404 14 12 1 2808 3
C936.3 936 1404 11 12 3 11232 12 no
C938.1 938 1407 25 6 1 2814 3 {6,3}13,12
C938.2 938 1407 29 6 1 2814 3 {6,3}20,3
C942.1 942 1413 26 6 1 2826 3 {6,3}14,11
C950.1 950 1425 27 6 1 2850 3 {6,3}15,10
C960.1 960 1440 12 14 2 5760 6
C960.2 960 1440 18 12 2 5760 6
C960.3 960 1440 12 14 2 5760 6
C962.1 962 1443 27 6 1 2886 3 {6,3}16,9
C962.2 962 1443 29 6 1 2886 3 {6,3}19,5
C968.1 968 1452 29 6 2 5808 6 {6,3}22,0
C974.1 974 1461 29 6 1 2922 3
C976.1 976 1464 19 10 1 2928 3
C978.1 978 1467 28 6 1 2934 3 {6,3}17,8
C992.1 992 1488 29 6 1 2976 3 {6,3}20,4
C998.1 998 1497 29 6 1 2994 3 {6,3}18,7
C1000.1 1000 1500 15 10 2 6000 6
C1000.2 1000 1500 13 12 2 6000 6

See also

[edit]

References

[edit]
  1. ^ a b Biggs, Norman (1993). Algebraic Graph Theory (2nd ed.). Cambridge: Cambridge University Press. pp. 118–140. ISBN 0-521-45897-8.
  2. ^ Marston Conder, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput, vol. 20, pp. 41–63
  3. ^ Foster, R. M. "Geometrical Circuits of Electrical Networks." Transactions of the American Institute of Electrical Engineers 51, 309–317, 1932.
  4. ^ "The Foster Census: R.M. Foster's Census of Connected Symmetric Trivalent Graphs", by Ronald M. Foster, I.Z. Bouwer, W.W. Chernoff, B. Monson and Z. Star (1988) ISBN 0-919611-19-2
  5. ^ Biggs, p. 148
  6. ^ a b Weisstein, Eric W., "Cubic Symmetric Graph", from Wolfram MathWorld.
  7. ^ Coxeter, H. S. M.; Moser, W. O. J. (1980), Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 14 (4th ed.), Springer Verlag, ISBN 978-0-387-09212-6, 8.4 Maps of type {3,6} or {6,3} on a torus.
  8. ^ Trivalent (cubic) symmetric graphs on up to 10000 vertices. Marston Conder, 2011.