User:Tomruen/List of symmetric cubic graphs
In the mathematical field of graph theory, a graph G is symmetric or arc-transitive if, given any two ordered pairs of adjacent vertices and of G, there is an automorphism
such that
- and [1]
A complete list of symmetric cubic graphs is well explored up to a certain number of vertices.
Combining the symmetry condition with the restriction that graphs be cubic (i.e. all vertices have degree 3) yields quite a strong condition, and such graphs are rare enough to be listed. They all have an even number of vertices. The Foster census and its extensions provide such lists.[2] The Foster census was begun in the 1930s by Ronald M. Foster while he was employed by Bell Labs,[3] and in 1988 (when Foster was 92[1]) the then current Foster census (listing all cubic symmetric graphs up to 512 vertices) was published in book form.[4] The list are cubic symmetric graphs with up to 1000 vertices[5][6] (ten of these are also distance-transitive; the exceptions are as indicated):
Generalized Petersen graphs
[edit]7 symmetric cubic graphs are Generalized Petersen graphs, G(m,n), have 2m vertices: (4,1), (5,2), (8,3), (10,2), (10,3), (12,5), (24,5).
#C8.1 | #C10.1 | #C12.1 | #C20.1 | #C20.2 | #C24.1 | #C48.1 |
---|---|---|---|---|---|---|
G(4,1) {4}+{4} |
G(5,2) {5}+{5/2} |
G(8,3) {8}+{8/3} |
G(10,2) {10}+2{5} |
G(10,3) {10}+{10/3} |
G(12,5) {12}+{12/5} |
G(24,5) {24}+{24/5} |
![]() Cubical graph |
![]() Petersen graph |
![]() Möbius–Kantor graph |
![]() Dodecahedral graph |
![]() Desargues graph |
![]() Nauru graph |
![]() |
Cubic distance-transitive graphs
[edit]There are only 12 cubic distance-transitive graphs.
Hexagonal regular map embeddings
[edit]Cubic toroidal graphs are hexagonal regular map of the form {6,3}b,c, with t=b2+bc+c2 = (b+c)2-bc, having 2t vertices, 3t edges, and t hexagonal cycles (Girth 6). they are bipartite graphs.[7] A hexagonal net can be drawn as a (b+c)×(b+c) array, and removing b×c array on the top corner.
When gcd(b,c)=1, they can expressed in LCF notation [n,-n]t. (2,0) is a special case.
b\c | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
2 | #C8.1, [5,-5]4, t=3![]() ![]() Cubical graph |
#C14.1, [5,-5]7, t=4![]() ![]() Utility graph |
||||||||
3 | #C26.1, [7,-7]13, t=16-3![]() ![]() F26A graph |
#C38.1, [15,-15]19, t=25-6![]() ![]() |
||||||||
4 | #C42.1, [9,-9]21, t=25-4![]() ![]() |
#C74.1, [21,-21]37, t=49-12![]() |
||||||||
5 | #C62.1, [11,-11]31, t=36-5![]() ![]() |
#C78.1, [33,-33]39, t=49-10![]() |
#C98.1, [37,-37]49, t=64-15![]() |
#C122.1 [n,-n]61, t=81-20 |
||||||
6 | #C86.1, [13,-13]43, t=49-6![]() |
#C182.1 [n,-n]91, t=121-30 |
||||||||
7 | #C114.1, [15,-15]57, t=64-7![]() |
#C134.1 [n,-n]67, t=81-14 |
#C158.1 [n,-n]79, t=100-21 |
#C186.1 [n,-n]93, t=121-28 |
#C218.1 [n,-n]109, t=144-35 |
#C254.1 [n,-n]127, t=169-42 |
||||
8 | #C146.1, [17,-17]73, t=81-8![]() |
#C194.1 [n,-n]97, t=121-24 |
#C258.1 [n,-n]129, t=169-40 |
#C338.1 [n,-n]169, t=225-56 |
||||||
9 | #C182.1, [19,-19]91, t=100-9![]() |
#C206.1 [n,-n]103, t=121-18 |
#C266.1 [n,-n]133, t=169-36 |
#C302.1 [n,-n]151, t=196-45 |
#C386.1 [n,-n]193, t=256-63 |
#C434.1 [n,-n]217, t=17*17=289-72 |
||||
10 | #C222.1, [21,-21]111, t=121-10![]() |
#C278.1 [n,-n]139, t=169-30 |
#C438.1 [n,-n]219, t=289-60 |
#C542.1 [n,-n]271 |
Complete list 4-1000 vertices
[edit]A bipartite symmetric cubic with 2n vertices can make a self-dual (n3) configuration, related by the Levi graph operation. The configuration will have half as many automorphisms as the cubic graph since bipartite interchange only possible after making the Levi graph.
Foster census |
Vert. | Edge | Diam | Girth | s-arc trans |
Aut | Aut/V | Map | Diagram1 | Diagram2 | Graph | Bipartite | Dist.trans |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C4.1 | 4 | 6 | 1 | 3 | 2 | 24 | 6 | ![]() {4,3}/2 |
![]() |
![]() |
Complete graph K4, Möbius ladder M4 Tetrahedral graph {3,3}, Hemicube graph {4,3}/2, HOG74, LCF=[2]^2 |
no | yes |
C6.1 | 6 | 9 | 2 | 4 | 3 | 72 | 12 | ![]() {6,3}1,1 |
![]() |
![]() |
Utility graph, Complete bipartite graph K3,3 Möbius ladder M6, HOG84, LCF=[3]^3 Levi graph for symmetric configuration (33) and regular complex polygon 2{4}3 |
yes | |
C8.1 | 8 | 12 | 3 | 4 | 2 | 48 | 6 | ![]() {6,3}2,0 |
![]() |
![]() |
G(4,1), Cube graph {4,3}, HOG1022, LCF=[3,-3]^4 Levi graph for symmetric configuration (43) or faces of a tetrahedron |
yes | |
C10.1 | 10 | 15 | 2 | 5 | 3 | 120 | 12 | {5,3}/2 |
![]() |
G(5,2) Petersen graph, HOG462, hemi-dodecahedron graph | no | yes | |
C14.1 | 14 | 21 | 3 | 6 | 4 | 336 | 24 | ![]() {6,3}2,1 |
![]() |
![]() |
Heawood graph, HOG1154, LCF=[5,-5]^7 Levi graph for Fano plane symmetric configuration (73) |
yes | |
C16.1 | 16 | 24 | 4 | 6 | 2 | 96 | 6 | ![]() {6,3}4×2 |
![]() |
![]() |
G(8,3), Möbius–Kantor graph, HOG1229, LCF=[5,-5]^8 Levi graph for Möbius–Kantor configuration (83) and Möbius–Kantor polygon 3{3}3 |
||
C18.1 | 18 | 27 | 4 | 6 | 3 | 216 | 12 | ![]() {6,3}3,0 |
![]() |
![]() |
Pappus graph, HOG370, LCF=[5,7,-7,7,-7,-5]^3 Levi graph for Pappus configuration (93)1 |
yes | |
C20.1 | 20 | 30 | 5 | 5 | 2 | 120 | 6 | ![]() {5,3} |
![]() |
![]() |
G(10,2), Dodecahedron graph {5,3}, HOG1043, LCF=[10,7,4,-4,-7,10,-4,7,-7,4]^2 | no | yes |
C20.2 | 20 | 30 | 5 | 6 | 3 | 240 | 12 | ![]() |
![]() |
G(10,3), Desargues graph, LCF=[5,-5,9,-9]^5 Levi graph for Desargues configuration (103) |
yes | ||
C24.1 | 24 | 36 | 4 | 6 | 2 | 144 | 6 | ![]() {6,3}2,2 |
![]() |
![]() |
G(12,5), Nauru graph, HOG1234, LCF=[5,-9,7,-7,9,-5]^4 Levi graph for Coxeter or Nauru configuration (123) |
||
C26.1 | 26 | 39 | 5 | 6 | 1 | 78 | 3 | ![]() {6,3}3,1 |
![]() |
![]() |
F26A graph[6], LCF=[7,-7]^13 Levi graph for a symmetric (133) configuration |
||
C28.1 | 28 | 42 | 4 | 7 | 3 | 336 | 12 | ![]() |
Coxeter graph | no | yes | ||
C30.1 | 30 | 45 | 4 | 8 | 5 | 1440 | 48 | ![]() |
![]() |
Tutte–Coxeter graph, LCF=[-13,-9,7,-7,9,13]^5 Levi graph for Cremona-Richmond_configuration (153) |
yes | ||
C32.1 | 32 | 48 | 5 | 6 | 2 | 192 | 6 | ![]() {6,3}4,0 |
![]() |
![]() |
Dyck graph, LCF=[5,-5,13,-13]^8 Levi graph for a symmetric Dyck configuration (163) configuration |
||
C38.1 | 38 | 57 | 5 | 6 | 1 | 114 | 3 | ![]() {6,3}3,2 |
![]() |
LCF=[15,-15]^19 Levi graph for a symmetric (193) configuration |
|||
C40.1 | 40 | 60 | 6 | 8 | 3 | 480 | 12 | ![]() |
LCF=[15,9,-9,-15]^10 Levi graph for a symmetric (203) configuration |
||||
C42.1 | 42 | 63 | 6 | 6 | 1 | 126 | 3 | ![]() {6,3}4,1 |
![]() |
LCF=[9,-9]^21 Levi graph for a symmetric (213) configuration |
|||
C48.1 | 48 | 72 | 6 | 8 | 2 | 288 | 6 | ![]() |
![]() |
Double Nauru graph, G(24,5), LCF=[-7,9,19,-19,-9,7]^8 Levi graph for a symmetric (243) configuration |
|||
C50.1 | 50 | 75 | 7 | 6 | 2 | 300 | 6 | ![]() {6,3}5,0 |
![]() |
LCF=[-21,-19,19,-19,19,-19,19,21,-21,21]^5 Levi graph for a symmetric (253) configuration |
|||
C54.1 | 54 | 81 | 6 | 6 | 2 | 324 | 6 | ![]() {6,3}3,3 |
![]() |
LCF=[-13,-11,11,-11,11,13]^9 Levi graph for a symmetric (273) configuration |
|||
C56.1 | 56 | 84 | 7 | 6 | 1 | 168 | 3 | ![]() {6,3}4,2 |
![]() |
LCF=[-13,-11,11,13]^14 Levi graph for a symmetric (283) configuration |
|||
C56.2 | 56 | 84 | 6 | 7 | 2 | 336 | 6 | ![]() {7,3}2,2 |
![]() |
![]() |
Cubic Klein graph, LCF=[-28,-19,-12,-18,12,15,-15,-12,18,12,19,-28,-18,18]^4 | no | |
C56.3 | 56 | 84 | 7 | 8 | 3 | 672 | 12 | Levi graph for a symmetric (283) configuration | |||||
C60.1 | 60 | 90 | 5 | 9 | 2 | 360 | 6 | ![]() |
LCF=[12,-17,-12,25,17,-26,-9,9,-25,26]^6 | no | |||
C62.1 | 62 | 93 | 7 | 6 | 1 | 186 | 3 | ![]() {6,3}5,1 |
![]() |
LCF=[11,-11]^31 Levi graph for a symmetric (313) configuration |
|||
C64.1 | 64 | 96 | 6 | 8 | 2 | 384 | 6 | ![]() |
LCF=[23,-11,-29,25,-25,29,11,-23]^8 Levi graph for a symmetric (323) configuration |
||||
C72.1 | 72 | 108 | 8 | 6 | 2 | 432 | 6 | ![]() {6,3}6,0 |
![]() |
LCF=[-31,9,-5,5,-9,31]^12 Levi graph for a symmetric (363) configuration |
|||
C74.1 | 74 | 111 | 7 | 6 | 1 | 222 | 3 | {6,3}4,3 | ![]() |
LCF=[-21,21]^37 Levi graph for a symmetric (373) configuration |
|||
C78.1 | 78 | 117 | 8 | 6 | 1 | 234 | 3 | {6,3}5,2 | ![]() |
LCF=[-33,33]^39 Levi graph for a symmetric (393) configuration |
|||
C80.1 | 80 | 120 | 8 | 10 | 3 | 960 | 12 | ![]() |
LCF=[-25,9,-9,25]^20 Levi graph for a symmetric (403) configuration |
||||
C84.1 | 84 | 126 | 7 | 7 | 2 | 504 | 6 | no | |||||
C86.1 | 86 | 129 | 9 | 6 | 1 | 258 | 3 | {6,3}6,1 | ![]() |
LCF=[-13,13]^43 Levi graph for a symmetric (433) configuration |
|||
C90.1 | 90 | 135 | 8 | 10 | 5 | 4320 | 48 | ![]() |
![]() |
Foster graph, LCF=[17,-9,37,37,9,-17]^15 Levi graph for a symmetric Foster configuration (453) configuration |
yes | ||
C96.1 | 96 | 144 | 8 | 6 | 2 | 576 | 6 | {6,3}4,4 | ![]() |
LCF=[-41,-39,39,41,-41,41,-41,41]^12 Levi graph for a symmetric (483) configuration |
|||
C96.2 | 96 | 144 | 7 | 8 | 3 | 1152 | 12 | ![]() |
LCF=[-45,-33,-15,45,-39,-21,-45,39,21,45,-15,15,-45,39,-39,45,33,27,-45,15,-27,45,-39,39]^4 Levi graph for a symmetric (483) configuration |
||||
C98.1 | 98 | 147 | 9 | 6 | 1 | 294 | 3 | {6,3}5,3 | ![]() |
LCF=[-37,37]^49 Levi graph for a symmetric (493) configuration |
|||
C98.2 | 98 | 147 | 9 | 6 | 2 | 588 | 6 | {6,3}7,0 | ![]() |
LCF=[-43,-41,41,-41,41,-41,41,-41,41,-41,41,43,-43,43]^7 Levi graph for a symmetric (493) configuration |
|||
C102.1 | 102 | 153 | 7 | 9 | 4 | 2448 | 24 | ![]() |
![]() |
Biggs-Smith graph | no | yes | |
C104.1 | 104 | 156 | 9 | 6 | 1 | 312 | 3 | {6,3}6,2 | Levi graph for a symmetric (523) configuration | ||||
C108.1 | 108 | 162 | 7 | 9 | 2 | 648 | 6 | no | |||||
C110.1 | 110 | 165 | 7 | 10 | 3 | 1320 | 12 | Levi graph for a symmetric (553) configuration | |||||
C112.1 | 112 | 168 | 7 | 10 | 1 | 336 | 3 | Levi graph for a symmetric (563) configuration | |||||
C112.2 | 112 | 168 | 7 | 8 | 2 | 672 | 6 | Levi graph for a symmetric (563) configuration | |||||
C112.3 | 112 | 168 | 10 | 8 | 3 | 1344 | 12 | Levi graph for a symmetric (553) configuration | |||||
C114.1 | 114 | 171 | 10 | 6 | 1 | 342 | 3 | {6,3}7,1 | ![]() |
Levi graph for a symmetric (573) configuration | |||
C120.1 | 120 | 180 | 8 | 8 | 2 | 720 | 6 | Levi graph for a symmetric (603) configuration | |||||
C120.2 | 120 | 180 | 9 | 10 | 2 | 720 | 6 | Levi graph for a symmetric (603) configuration | |||||
C122.1 | 122 | 183 | 9 | 6 | 1 | 366 | 3 | {6,3}5,4 | Levi graph for a symmetric (613) configuration | ||||
C126.1 | 126 | 189 | 10 | 6 | 1 | 378 | 3 | {6,3}6,3 | Levi graph for a symmetric (633) configuration | ||||
C128.1 | 128 | 192 | 11 | 6 | 2 | 768 | 6 | {6,3}8,0 | Levi graph for a symmetric (643) configuration | ||||
C128.2 | 128 | 192 | 8 | 10 | 2 | 768 | 6 | Levi graph for a symmetric (643) configuration | |||||
C134.1 | 134 | 201 | 11 | 6 | 1 | 402 | 3 | {6,3}7,2 | Levi graph for a symmetric (673) configuration | ||||
C144.1 | 144 | 216 | 7 | 8 | 1 | 432 | 3 | Levi graph for a symmetric (723) configuration | |||||
C144.2 | 144 | 216 | 8 | 10 | 2 | 864 | 6 | Levi graph for a symmetric (723) configuration | |||||
C146.1 | 146 | 219 | 11 | 6 | 1 | 438 | 3 | {6,3}8,1 | ![]() |
Levi graph for a symmetric (733) configuration | |||
C150.1 | 150 | 225 | 10 | 6 | 2 | 900 | 6 | {6,3}5,5 | Levi graph for a symmetric (753) configuration | ||||
C152.1 | 152 | 228 | 11 | 6 | 1 | 456 | 3 | {6,3}6,4 | Levi graph for a symmetric (763) configuration | ||||
C158.1 | 158 | 237 | 11 | 6 | 1 | 474 | 3 | {6,3}7,3 | Levi graph for a symmetric (793) configuration | ||||
C162.1 | 162 | 243 | 7 | 12 | 1 | 486 | 3 | Levi graph for a symmetric (813) configuration | |||||
C162.2 | 162 | 243 | 12 | 6 | 2 | 972 | 6 | {6,3}9,0 | Levi graph for a symmetric (813) configuration | ||||
C162.3 | 162 | 243 | 8 | 12 | 3 | 1944 | 12 | Levi graph for a symmetric (813) configuration | |||||
C168.1 | 168 | 252 | 7 | 12 | 1 | 504 | 3 | Levi graph for a symmetric (843) configuration | |||||
C168.2 | 168 | 252 | 12 | 6 | 1 | 504 | 3 | {6,3}8,2 | Levi graph for a symmetric (843) configuration | ||||
C168.3 | 168 | 252 | 8 | 8 | 2 | 1008 | 6 | no | |||||
C168.4 | 168 | 252 | 7 | 9 | 2 | 1008 | 6 | no | |||||
C168.5 | 168 | 252 | 9 | 7 | 2 | 1008 | 6 | no | |||||
C168.6 | 168 | 252 | 8 | 12 | 2 | 1008 | 6 | Levi graph for a symmetric (843) configuration | |||||
C182.1 | 182 | 273 | 13 | 6 | 1 | 546 | 3 | {6,3}6,5 | ![]() |
Levi graph for a symmetric (913) configuration | |||
C182.2 | 182 | 273 | 11 | 6 | 1 | 546 | 3 | {6,3}9,1 | Levi graph for a symmetric (913) configuration | ||||
C182.3 | 182 | 273 | 8 | 7 | 2 | 1092 | 6 | no | |||||
C182.4 | 182 | 273 | 9 | 12 | 3 | 2184 | 12 | Levi graph for a symmetric (913) configuration | |||||
C186.1 | 186 | 279 | 12 | 6 | 1 | 558 | 3 | {6,3}7,4 | Levi graph for a symmetric (933) configuration | ||||
C192.1 | 192 | 288 | 10 | 10 | 2 | 1152 | 6 | Levi graph for a symmetric (963) configuration | |||||
C192.2 | 192 | 288 | 8 | 12 | 2 | 1152 | 6 | Levi graph for a symmetric (963) configuration | |||||
C192.3 | 192 | 288 | 12 | 8 | 3 | 2304 | 12 | Levi graph for a symmetric (963) configuration | |||||
C194.1 | 194 | 291 | 13 | 6 | 1 | 582 | 3 | {6,3}8,3 | Levi graph for a symmetric (1473) configuration | ||||
C200.1 | 200 | 300 | 13 | 6 | 2 | 1200 | 6 | {6,3}10,0 | Levi graph for a symmetric (1503) configuration | ||||
C204.1 | 204 | 306 | 9 | 12 | 4 | 4896 | 24 | Levi graph for a symmetric (1023) configuration | |||||
C206.1 | 206 | 309 | 13 | 6 | 1 | 618 | 3 | {6,3}9,2 | Levi graph for a symmetric (1033) configuration | ||||
C208.1 | 208 | 312 | 9 | 10 | 1 | 624 | 3 | Levi graph for a symmetric (1043) configuration | |||||
C216.1 | 216 | 324 | 9 | 10 | 2 | 1296 | 6 | Levi graph for a symmetric (1083) configuration | |||||
C216.2 | 216 | 324 | 8 | 12 | 2 | 1296 | 6 | Levi graph for a symmetric (1083) configuration | |||||
C216.3 | 216 | 324 | 12 | 6 | 2 | 1296 | 6 | {6,3}6,6 | Levi graph for a symmetric (1083) configuration | ||||
C218.1 | 218 | 327 | 13 | 6 | 1 | 654 | 3 | {6,3}7,5 | Levi graph for a symmetric (1093) configuration | ||||
C220.1 | 220 | 330 | 9 | 10 | 2 | 1320 | 6 | Levi graph for a symmetric (1103) configuration | |||||
C220.2 | 220 | 330 | 9 | 10 | 2 | 1320 | 6 | no | |||||
C220.3 | 220 | 330 | 10 | 10 | 3 | 2640 | 12 | Levi graph for a symmetric (1103) configuration | |||||
C222.1 | 222 | 333 | 14 | 6 | 1 | 666 | 3 | {6,3}10,1 | ![]() |
Levi graph for a symmetric (1113) configuration | |||
C224.1 | 224 | 336 | 13 | 6 | 1 | 672 | 3 | {6,3}8,4 | Levi graph for a symmetric (1123) configuration | ||||
C224.2 | 224 | 336 | 9 | 12 | 2 | 1344 | 6 | Levi graph for a symmetric (1123) configuration | |||||
C224.3 | 224 | 336 | 10 | 12 | 3 | 2688 | 12 | Levi graph for a symmetric (1123) configuration | |||||
C234.1 | 234 | 351 | 14 | 6 | 1 | 702 | 3 | {6,3}9,3 | Levi graph for a symmetric (1173) configuration | ||||
C234.2 | 234 | 351 | 8 | 12 | 5 | 11232 | 48 | no | |||||
C240.1 | 240 | 360 | 10 | 9 | 2 | 1440 | 6 | Levi graph for a symmetric (1203) configuration | |||||
C240.2 | 240 | 360 | 11 | 10 | 2 | 1440 | 6 | no | |||||
C240.3 | 240 | 360 | 10 | 8 | 2 | 1440 | 6 | Levi graph for a symmetric (1203) configuration | |||||
C242.1 | 242 | 363 | 15 | 6 | 2 | 1452 | 6 | {6,3}11,0 | Levi graph for a symmetric (1213) configuration | ||||
C248.1 | 248 | 372 | 15 | 6 | 1 | 744 | 3 | {6,3}10,2 | Levi graph for a symmetric (1243) configuration | ||||
C250.1 | 250 | 375 | 10 | 10 | 2 | 1500 | 6 | Levi graph for a symmetric (1253) configuration | |||||
C254.1 | 254 | 381 | 13 | 6 | 1 | 762 | 3 | {6,3}7,6 | Levi graph for a symmetric (1273) configuration | ||||
C256.1 | 256 | 384 | 9 | 12 | 1 | 768 | 3 | Levi graph for a symmetric (1283) configuration | |||||
C256.2 | 256 | 384 | 11 | 10 | 2 | 1536 | 6 | Levi graph for a symmetric (1283) configuration | |||||
C256.3 | 256 | 384 | 10 | 10 | 2 | 1536 | 6 | Levi graph for a symmetric (1283) configuration | |||||
C256.4 | 256 | 384 | 10 | 8 | 2 | 1536 | 6 | Levi graph for a symmetric (1283) configuration | |||||
C258.1 | 258 | 387 | 14 | 6 | 1 | 774 | 3 | {6,3}8,5 | |||||
C266.1 | 266 | 399 | 15 | 6 | 1 | 798 | 3 | {6,3}9,4 | |||||
C266.2 | 266 | 399 | 15 | 6 | 1 | 798 | 3 | {6,3}11,1 | |||||
C278.1 | 278 | 417 | 15 | 6 | 1 | 834 | 3 | {6,3}10,3 | |||||
C288.1 | 288 | 432 | 16 | 6 | 2 | 1728 | 6 | {6,3}12,0 | |||||
C288.2 | 288 | 432 | 9 | 12 | 3 | 3456 | 12 | ||||||
C294.1 | 294 | 441 | 16 | 6 | 1 | 882 | 3 | {6,3}11,2 | |||||
C294.2 | 294 | 441 | 14 | 6 | 2 | 1764 | 6 | {6,3}7,7 | |||||
C296.1 | 296 | 444 | 15 | 6 | 1 | 888 | 3 | {6,3}8,6 | |||||
C302.1 | 302 | 453 | 15 | 6 | 1 | 906 | 3 | {6,3}9,5 | |||||
C304.1 | 304 | 456 | 11 | 10 | 1 | 912 | 3 | ||||||
C312.1 | 312 | 468 | 9 | 12 | 1 | 936 | 3 | ||||||
C312.2 | 312 | 468 | 16 | 6 | 1 | 936 | 3 | {6,3}10,4 | |||||
C314.1 | 314 | 471 | 17 | 6 | 1 | 942 | 3 | {6,3}12,1 | |||||
C326.1 | 326 | 489 | 17 | 6 | 1 | 978 | 3 | {6,3}11,3 | |||||
C336.1 | 336 | 504 | 12 | 10 | 1 | 1008 | 3 | ||||||
C336.2 | 336 | 504 | 12 | 12 | 1 | 1008 | 3 | ||||||
C336.3 | 336 | 504 | 9 | 12 | 2 | 2016 | 6 | ||||||
C336.4 | 336 | 504 | 13 | 8 | 2 | 2016 | 6 | ||||||
C336.5 | 336 | 504 | 10 | 8 | 2 | 2016 | 6 | ||||||
C336.6 | 336 | 504 | 12 | 12 | 2 | 2016 | 6 | ||||||
C338.1 | 338 | 507 | 15 | 6 | 1 | 1014 | 3 | {6,3}8,7 | |||||
C338.2 | 338 | 507 | 17 | 6 | 2 | 2028 | 6 | {6,3}13,0 | |||||
C342.1 | 342 | 513 | 16 | 6 | 1 | 1026 | 3 | {6,3}9,6 | |||||
C344.1 | 344 | 516 | 17 | 6 | 1 | 1032 | 3 | {6,3}12,2 | |||||
C350.1 | 350 | 525 | 17 | 6 | 1 | 1050 | 3 | {6,3}10,5 | |||||
C360.1 | 360 | 540 | 11 | 8 | 2 | 2160 | 6 | ||||||
C360.2 | 360 | 540 | 10 | 12 | 3 | 4320 | 12 | ||||||
C362.1 | 362 | 543 | 17 | 6 | 1 | 1086 | 3 | {6,3}11,4 | |||||
C364.1 | 364 | 546 | 12 | 7 | 2 | 2184 | 6 | no | |||||
C364.2 | 364 | 546 | 11 | 7 | 2 | 2184 | 6 | no | |||||
C364.3 | 364 | 546 | 10 | 12 | 2 | 2184 | 6 | ||||||
C364.4 | 364 | 546 | 9 | 12 | 2 | 2184 | 6 | no | |||||
C364.5 | 364 | 546 | 9 | 12 | 2 | 2184 | 6 | ||||||
C364.6 | 364 | 546 | 13 | 7 | 2 | 2184 | 6 | no | |||||
C364.7 | 364 | 546 | 12 | 12 | 3 | 4368 | 12 | ||||||
C366.1 | 366 | 549 | 18 | 6 | 1 | 1098 | 3 | {6,3}13,1 | |||||
C378.1 | 378 | 567 | 18 | 6 | 1 | 1134 | 3 | {6,3}12,3 | |||||
C378.2 | 378 | 567 | 10 | 12 | 1 | 1134 | 3 | ||||||
C384.1 | 384 | 576 | 16 | 6 | 2 | 2304 | 6 | {6,3}8,8 | |||||
C384.2 | 384 | 576 | 10 | 12 | 2 | 2304 | 6 | ||||||
C384.3 | 384 | 576 | 10 | 12 | 2 | 2304 | 6 | ||||||
C384.4 | 384 | 576 | 12 | 12 | 3 | 4608 | 12 | ||||||
C386.1 | 386 | 579 | 17 | 6 | 1 | 1158 | 3 | {6,3}9,7 | |||||
C392.1 | 392 | 588 | 17 | 6 | 1 | 1176 | 3 | {6,3}10,6 | |||||
C392.2 | 392 | 588 | 19 | 6 | 2 | 2352 | 6 | {6,3}14,0 | |||||
C398.1 | 398 | 597 | 19 | 6 | 1 | 1194 | 3 | {6,3}13,2 | |||||
C400.1 | 400 | 600 | 10 | 8 | 1 | 1200 | 3 | ||||||
C400.2 | 400 | 600 | 13 | 10 | 2 | 2400 | 6 | ||||||
C402.1 | 402 | 603 | 18 | 6 | 1 | 1206 | 3 | {6,3}11,5 | |||||
C408.1 | 408 | 612 | 10 | 9 | 2 | 2448 | 6 | no | |||||
C408.2 | 408 | 612 | 10 | 9 | 3 | 4896 | 12 | no | |||||
C416.1 | 416 | 624 | 19 | 6 | 1 | 1248 | 3 | {6,3}12,4 | |||||
C422.1 | 422 | 633 | 19 | 6 | 1 | 1266 | 3 | {6,3}14,1 | |||||
C432.1 | 432 | 648 | 12 | 8 | 1 | 1296 | 3 | ||||||
C432.2 | 432 | 648 | 10 | 12 | 1 | 1296 | 3 | ||||||
C432.3 | 432 | 648 | 12 | 10 | 2 | 2592 | 6 | ||||||
C432.4 | 432 | 648 | 12 | 12 | 2 | 2592 | 6 | ||||||
C432.5 | 432 | 648 | 14 | 10 | 2 | 2592 | 6 | ||||||
C434.1 | 434 | 651 | 17 | 6 | 1 | 1302 | 3 | {6,3}9,8 | |||||
C434.2 | 434 | 651 | 19 | 6 | 1 | 1302 | 3 | {6,3}13,3 | |||||
C438.1 | 438 | 657 | 18 | 6 | 1 | 1314 | 3 | {6,3}10,7 | |||||
C440.1 | 440 | 660 | 12 | 10 | 2 | 2640 | 6 | ||||||
C440.2 | 440 | 660 | 11 | 10 | 2 | 2640 | 6 | ||||||
C440.3 | 440 | 660 | 10 | 12 | 3 | 5280 | 12 | ||||||
C446.1 | 446 | 669 | 19 | 6 | 1 | 1338 | 3 | {6,3}11,6 | |||||
C448.1 | 448 | 672 | 13 | 10 | 1 | 1344 | 3 | ||||||
C448.2 | 448 | 672 | 11 | 7 | 1 | 1344 | 3 | no | |||||
C448.3 | 448 | 672 | 10 | 14 | 2 | 2688 | 6 | ||||||
C450.1 | 450 | 675 | 20 | 6 | 2 | 2700 | 6 | {6,3}15,0 | |||||
C456.1 | 456 | 684 | 10 | 12 | 1 | 1368 | 3 | ||||||
C456.2 | 456 | 684 | 20 | 6 | 1 | 1368 | 3 | {6,3}14,2 | |||||
C458.1 | 458 | 687 | 19 | 6 | 1 | 1374 | 3 | {6,3}12,5 | |||||
C468.1 | 468 | 702 | 13 | 12 | 5 | 22464 | 48 | ||||||
C474.1 | 474 | 711 | 20 | 6 | 1 | 1422 | 3 | {6,3}13,4 | |||||
C480.1 | 480 | 720 | 11 | 12 | 2 | 2880 | 6 | ||||||
C480.2 | 480 | 720 | 15 | 9 | 2 | 2880 | 6 | no | |||||
C480.3 | 480 | 720 | 10 | 12 | 2 | 2880 | 6 | no | |||||
C480.4 | 480 | 720 | 10 | 10 | 2 | 2880 | 6 | ||||||
C482.1 | 482 | 723 | 21 | 6 | 1 | 1446 | 3 | {6,3}15,1 | |||||
C486.1 | 486 | 729 | 18 | 6 | 2 | 2916 | 6 | {6,3}9,9 | |||||
C486.2 | 486 | 729 | 12 | 12 | 2 | 2916 | 6 | ||||||
C486.3 | 486 | 729 | 12 | 12 | 3 | 5832 | 12 | ||||||
C486.4 | 486 | 729 | 12 | 12 | 3 | 5832 | 12 | ||||||
C488.1 | 488 | 732 | 19 | 6 | 1 | 1464 | 3 | {6,3}10,8 | |||||
C494.1 | 494 | 741 | 21 | 6 | 1 | 1482 | 3 | {6,3}14,3 | |||||
C494.2 | 494 | 741 | 19 | 6 | 1 | 1482 | 3 | ||||||
C496.1 | 496 | 744 | 15 | 10 | 1 | 1488 | 3 | ||||||
C500.1 | 500 | 750 | 12 | 10 | 2 | 3000 | 6 | no | |||||
C504.1 | 504 | 756 | 10 | 9 | 1 | 1512 | 3 | no | |||||
C504.2 | 504 | 756 | 20 | 6 | 1 | 1512 | 3 | {6,3}12,6 | |||||
C504.3 | 504 | 756 | 12 | 12 | 1 | 1512 | 3 | ||||||
C504.4 | 504 | 756 | 10 | 14 | 2 | 3024 | 6 | no | |||||
C504.5 | 504 | 756 | 12 | 9 | 2 | 3024 | 6 | no | |||||
C506.1 | 506 | 759 | 11 | 11 | 3 | 6072 | 12 | no | |||||
C506.2 | 506 | 759 | 10 | 14 | 4 | 12144 | 24 | ||||||
C512.1 | 512 | 768 | 12 | 14 | 1 | 1536 | 3 | ||||||
C512.2 | 512 | 768 | 21 | 6 | 2 | 3072 | 6 | {6,3}16,0 | |||||
C512.3 | 512 | 768 | 11 | 12 | 2 | 3072 | 6 | ||||||
C512.4 | 512 | 768 | 12 | 10 | 2 | 3072 | 6 | ||||||
C512.5 | 512 | 768 | 11 | 12 | 2 | 3072 | 6 | ||||||
C512.6 | 512 | 768 | 12 | 8 | 2 | 3072 | 6 | ||||||
C512.7 | 512 | 768 | 10 | 12 | 2 | 3072 | 6 | ||||||
C518.1 | 518 | 777 | 21 | 6 | 1 | 1554 | 3 | {6,3}13,5 | |||||
C518.2 | 518 | 777 | 21 | 6 | 1 | 1554 | 3 | {6,3}15,2 | |||||
C536.1 | 536 | 804 | 21 | 6 | 1 | 1608 | 3 | {6,3}14,4 | |||||
C542.1 | 542 | 813 | 19 | 6 | 1 | 1626 | 3 | {6,3}10,9 | |||||
C546.1 | 546 | 819 | 22 | 6 | 1 | 1638 | 3 | {6,3}11,8 | |||||
C546.2 | 546 | 819 | 20 | 6 | 1 | 1638 | 3 | {6,3}16,1 | |||||
C554.1 | 554 | 831 | 21 | 6 | 1 | 1662 | 3 | {6,3}12,7 | |||||
C558.1 | 558 | 837 | 22 | 6 | 1 | 1674 | 3 | {6,3}15,3 | |||||
C566.1 | 566 | 849 | 21 | 6 | 1 | 1698 | 3 | {6,3}13,6 | |||||
C570.1 | 570 | 855 | 11 | 9 | 2 | 3420 | 6 | no | |||||
C570.2 | 570 | 855 | 11 | 9 | 3 | 6840 | 12 | no | |||||
C576.1 | 576 | 864 | 12 | 8 | 1 | 1728 | 3 | ||||||
C576.2 | 576 | 864 | 16 | 10 | 2 | 3456 | 6 | ||||||
C576.3 | 576 | 864 | 12 | 12 | 2 | 3456 | 6 | ||||||
C576.4 | 576 | 864 | 14 | 12 | 3 | 6912 | 12 | ||||||
C578.1 | 578 | 867 | 23 | 6 | 2 | 3468 | 6 | {6,3}17,0 | |||||
C582.1 | 582 | 873 | 22 | 6 | 1 | 1746 | 3 | {6,3}14,5 | |||||
C584.1 | 584 | 876 | 23 | 6 | 1 | 1752 | 3 | {6,3}16,2 | |||||
C592.1 | 592 | 888 | 15 | 10 | 1 | 1776 | 3 | ||||||
C600.1 | 600 | 900 | 12 | 12 | 2 | 3600 | 6 | ||||||
C600.2 | 600 | 900 | 20 | 6 | 2 | 3600 | 6 | {6,3}10,10 | |||||
C602.1 | 602 | 903 | 21 | 6 | 1 | 1806 | 3 | {6,3}11,9 | |||||
C602.2 | 602 | 903 | 23 | 6 | 1 | 1806 | 3 | {6,3}15,4 | |||||
C608.1 | 608 | 912 | 21 | 6 | 1 | 1824 | 3 | {6,3}12,8 | |||||
C614.1 | 614 | 921 | 23 | 6 | 1 | 1842 | 3 | {6,3}17,1 | |||||
C618.1 | 618 | 927 | 22 | 6 | 1 | 1854 | 3 | {6,3}13,7 | |||||
C620.1 | 620 | 930 | 10 | 15 | 4 | 14880 | 24 | no | |||||
C624.1 | 624 | 936 | 16 | 10 | 1 | 1872 | 3 | ||||||
C624.2 | 624 | 936 | 12 | 14 | 1 | 1872 | 3 | ||||||
C626.1 | 626 | 939 | 23 | 6 | 1 | 1878 | 3 | {6,3}16,3 | |||||
C632.1 | 632 | 948 | 23 | 6 | 1 | 1896 | 3 | {6,3}14,6 | |||||
C640.1 | 640 | 960 | 12 | 10 | 3 | 7680 | 12 | ||||||
C648.1 | 648 | 972 | 12 | 12 | 1 | 1944 | 3 | ||||||
C648.2 | 648 | 972 | 13 | 12 | 1 | 1944 | 3 | ||||||
C648.3 | 648 | 972 | 10 | 12 | 2 | 3888 | 6 | ||||||
C648.4 | 648 | 972 | 12 | 12 | 2 | 3888 | 6 | ||||||
C648.5 | 648 | 972 | 14 | 12 | 2 | 3888 | 6 | ||||||
C648.6 | 648 | 972 | 24 | 6 | 2 | 3888 | 6 | {6,3}18,0 | |||||
C650.1 | 650 | 975 | 23 | 6 | 1 | 1950 | 3 | {6,3}15,5 | |||||
C650.2 | 650 | 975 | 11 | 12 | 5 | 31200 | 48 | ||||||
C654.1 | 654 | 981 | 24 | 6 | 1 | 1962 | 3 | {6,3}17,2 | |||||
C660.1 | 660 | 990 | 11 | 10 | 2 | 3960 | 6 | no | |||||
C662.1 | 662 | 993 | 21 | 6 | 1 | 1986 | 3 | {6,3}11,10 | |||||
C666.1 | 666 | 999 | 22 | 6 | 1 | 1998 | 3 | {6,3}12,9 | |||||
C672.1 | 672 | 1008 | 12 | 12 | 1 | 2016 | 3 | ||||||
C672.2 | 672 | 1008 | 24 | 6 | 1 | 2016 | 3 | {6,3}16,4 | |||||
C672.3 | 672 | 1008 | 12 | 12 | 1 | 2016 | 3 | ||||||
C672.4 | 672 | 1008 | 12 | 8 | 2 | 4032 | 6 | no | |||||
C672.5 | 672 | 1008 | 13 | 12 | 2 | 4032 | 6 | ||||||
C672.6 | 672 | 1008 | 12 | 12 | 2 | 4032 | 6 | ||||||
C672.7 | 672 | 1008 | 12 | 14 | 2 | 4032 | 6 | ||||||
C674.1 | 674 | 1011 | 23 | 6 | 1 | 2022 | 3 | {6,3}13,8 | |||||
C680.1 | 680 | 1020 | 10 | 12 | 2 | 4080 | 6 | no | |||||
C680.2 | 680 | 1020 | 11 | 10 | 3 | 8160 | 12 | no | |||||
C686.1 | 686 | 1029 | 25 | 6 | 1 | 2058 | 3 | {6,3}14,7 | |||||
C686.2 | 686 | 1029 | 23 | 6 | 1 | 2058 | 3 | {6,3}18,1 | |||||
C686.3 | 686 | 1029 | 12 | 12 | 2 | 4116 | 6 | ||||||
C688.1 | 688 | 1032 | 17 | 10 | 1 | 2064 | 3 | ||||||
C698.1 | 698 | 1047 | 25 | 6 | 1 | 2094 | 3 | {6,3}17,3 | |||||
C702.1 | 702 | 1053 | 24 | 6 | 1 | 2106 | 3 | {6,3}15,6 | |||||
C702.2 | 702 | 1053 | 14 | 12 | 1 | 2106 | 3 | ||||||
C720.1 | 720 | 1080 | 11 | 10 | 1 | 2160 | 3 | ||||||
C720.2 | 720 | 1080 | 12 | 8 | 1 | 2160 | 3 | ||||||
C720.3 | 720 | 1080 | 10 | 10 | 2 | 4320 | 6 | ||||||
C720.4 | 720 | 1080 | 12 | 8 | 2 | 4320 | 6 | ||||||
C720.5 | 720 | 1080 | 16 | 8 | 2 | 4320 | 6 | ||||||
C720.6 | 720 | 1080 | 12 | 12 | 3 | 8640 | 12 | ||||||
C722.1 | 722 | 1083 | 25 | 6 | 1 | 2166 | 3 | {6,3}16,5 | |||||
C722.2 | 722 | 1083 | 25 | 6 | 2 | 4332 | 6 | {6,3}19,0 | |||||
C726.1 | 726 | 1089 | 22 | 6 | 2 | 4356 | 6 | {6,3}11,11 | |||||
C728.1 | 728 | 1092 | 25 | 6 | 1 | 2184 | 3 | {6,3}12,10 | |||||
C728.2 | 728 | 1092 | 23 | 6 | 1 | 2184 | 3 | {6,3}18,2 | |||||
C728.3 | 728 | 1092 | 14 | 12 | 2 | 4368 | 6 | ||||||
C728.4 | 728 | 1092 | 13 | 12 | 2 | 4368 | 6 | ||||||
C728.5 | 728 | 1092 | 12 | 12 | 2 | 4368 | 6 | ||||||
C728.6 | 728 | 1092 | 12 | 12 | 2 | 4368 | 6 | ||||||
C728.7 | 728 | 1092 | 14 | 12 | 3 | 8736 | 12 | ||||||
C734.1 | 734 | 1101 | 23 | 6 | 1 | 2202 | 3 | {6,3}13,9 | |||||
C744.1 | 744 | 1116 | 13 | 12 | 1 | 2232 | 3 | ||||||
C744.2 | 744 | 1116 | 24 | 6 | 1 | 2232 | 3 | {6,3}14,8 | |||||
C746.1 | 746 | 1119 | 25 | 6 | 1 | 2238 | 3 | {6,3}17,4 | |||||
C750.1 | 750 | 1125 | 12 | 12 | 2 | 4500 | 6 | ||||||
C758.1 | 758 | 1137 | 25 | 6 | 1 | 2274 | 3 | {6,3}15,7 | |||||
C762.1 | 762 | 1143 | 26 | 6 | 1 | 2286 | 3 | {6,3}19,1 | |||||
C768.1 | 768 | 1152 | 12 | 12 | 1 | 2304 | 3 | ||||||
C768.2 | 768 | 1152 | 18 | 10 | 2 | 4608 | 6 | ||||||
C768.3 | 768 | 1152 | 12 | 14 | 2 | 4608 | 6 | ||||||
C768.4 | 768 | 1152 | 13 | 12 | 2 | 4608 | 6 | ||||||
C768.5 | 768 | 1152 | 12 | 12 | 2 | 4608 | 6 | ||||||
C768.6 | 768 | 1152 | 11 | 12 | 2 | 4608 | 6 | ||||||
C768.7 | 768 | 1152 | 11 | 12 | 2 | 4608 | 6 | ||||||
C774.1 | 774 | 1161 | 26 | 6 | 1 | 2322 | 3 | {6,3}18,3 | |||||
C776.1 | 776 | 1164 | 25 | 6 | 1 | 2328 | 3 | {6,3}16,6 | |||||
C784.1 | 784 | 1176 | 17 | 10 | 1 | 2352 | 3 | ||||||
C784.2 | 784 | 1176 | 19 | 10 | 2 | 4704 | 6 | ||||||
C794.1 | 794 | 1191 | 23 | 6 | 1 | 2382 | 3 | {6,3}12,11 | |||||
C798.1 | 798 | 1197 | 24 | 6 | 1 | 2394 | 3 | {6,3}13,10 | |||||
C798.2 | 798 | 1197 | 26 | 6 | 1 | 2394 | 3 | {6,3}17,5 | |||||
C800.1 | 800 | 1200 | 27 | 6 | 2 | 4800 | 6 | {6,3}20,0 | |||||
C806.1 | 806 | 1209 | 25 | 6 | 1 | 2418 | 3 | {6,3}14,9 | |||||
C806.2 | 806 | 1209 | 27 | 6 | 1 | 2418 | 3 | {6,3}19,2 | |||||
C816.1 | 816 | 1224 | 12 | 8 | 2 | 4896 | 6 | no | |||||
C816.2 | 816 | 1224 | 12 | 9 | 2 | 4896 | 6 | no | |||||
C816.3 | 816 | 1224 | 12 | 12 | 2 | 4896 | 6 | ||||||
C816.4 | 816 | 1224 | 12 | 9 | 2 | 4896 | 6 | no | |||||
C816.5 | 816 | 1224 | 12 | 8 | 2 | 4896 | 6 | no | |||||
C816.6 | 816 | 1224 | 11 | 12 | 2 | 4896 | 6 | ||||||
C816.7 | 816 | 1224 | 10 | 15 | 2 | 4896 | 6 | no | |||||
C816.8 | 816 | 1224 | 12 | 9 | 2 | 4896 | 6 | no | |||||
C816.9 | 816 | 1224 | 11 | 14 | 3 | 9792 | 12 | ||||||
C818.1 | 818 | 1227 | 25 | 6 | 1 | 2454 | 3 | {6,3}15,8 | |||||
C824.1 | 824 | 1236 | 27 | 6 | 1 | 2472 | 3 | {6,3}18,4 | |||||
C832.1 | 832 | 1248 | 19 | 10 | 1 | 2496 | 3 | ||||||
C834.1 | 834 | 1251 | 26 | 6 | 1 | 2502 | 3 | {6,3}16,7 | |||||
C840.1 | 840 | 1260 | 11 | 12 | 1 | 2520 | 3 | ||||||
C840.2 | 840 | 1260 | 11 | 10 | 2 | 5040 | 6 | ||||||
C842.1 | 842 | 1263 | 27 | 6 | 1 | 2526 | 3 | {6,3}20,1 | |||||
C854.1 | 854 | 1281 | 27 | 6 | 1 | 2562 | 3 | {6,3}17,6 | |||||
C854.2 | 854 | 1281 | 27 | 6 | 1 | 2562 | 3 | {6,3}19,3 | |||||
C864.1 | 864 | 1296 | 24 | 6 | 2 | 5184 | 6 | {6,3}12,12 | |||||
C864.2 | 864 | 1296 | 16 | 12 | 2 | 5184 | 6 | ||||||
C864.3 | 864 | 1296 | 14 | 12 | 2 | 5184 | 6 | ||||||
C864.4 | 864 | 1296 | 15 | 10 | 2 | 5184 | 6 | ||||||
C866.1 | 866 | 1299 | 25 | 6 | 1 | 2598 | 3 | {6,3}13,11 | |||||
C872.1 | 872 | 1308 | 25 | 6 | 1 | 2616 | 3 | {6,3}14,10 | |||||
C878.1 | 878 | 1317 | 27 | 6 | 1 | 2634 | 3 | {6,3}18,5 | |||||
C880.1 | 880 | 1320 | 12 | 10 | 2 | 5280 | 6 | ||||||
C880.2 | 880 | 1320 | 12 | 10 | 2 | 5280 | 6 | ||||||
C880.3 | 880 | 1320 | 12 | 14 | 3 | 10560 | 12 | ||||||
C882.1 | 882 | 1323 | 26 | 6 | 1 | 2646 | 3 | {6,3}15,9 | |||||
C882.2 | 882 | 1323 | 28 | 6 | 2 | 5292 | 6 | ||||||
C888.1 | 888 | 1332 | 14 | 12 | 1 | 2664 | 3 | ||||||
C888.2 | 888 | 1332 | 28 | 6 | 1 | 2664 | 3 | {6,3}20,2 | |||||
C896.1 | 896 | 1344 | 11 | 12 | 1 | 2688 | 3 | ||||||
C896.2 | 896 | 1344 | 27 | 6 | 1 | 2688 | 3 | {6,3}16,8 | |||||
C896.3 | 896 | 1344 | 13 | 12 | 1 | 2688 | 3 | ||||||
C896.4 | 896 | 1344 | 12 | 12 | 1 | 2688 | 3 | ||||||
C896.5 | 896 | 1344 | 14 | 14 | 2 | 5376 | 6 | ||||||
C906.1 | 906 | 1359 | 28 | 6 | 1 | 2718 | 3 | {6,3}19,4 | |||||
C912.1 | 912 | 1368 | 20 | 10 | 1 | 2736 | 3 | ||||||
C912.2 | 912 | 1368 | 12 | 14 | 1 | 2736 | 3 | ||||||
C914.1 | 914 | 1371 | 27 | 6 | 1 | 2742 | 3 | {6,3}17,7 | |||||
C926.1 | 926 | 1389 | 29 | 6 | 1 | 2778 | 3 | ||||||
C936.1 | 936 | 1404 | 28 | 6 | 1 | 2808 | 3 | {6,3}18,6 | |||||
C936.2 | 936 | 1404 | 14 | 12 | 1 | 2808 | 3 | ||||||
C936.3 | 936 | 1404 | 11 | 12 | 3 | 11232 | 12 | no | |||||
C938.1 | 938 | 1407 | 25 | 6 | 1 | 2814 | 3 | {6,3}13,12 | |||||
C938.2 | 938 | 1407 | 29 | 6 | 1 | 2814 | 3 | {6,3}20,3 | |||||
C942.1 | 942 | 1413 | 26 | 6 | 1 | 2826 | 3 | {6,3}14,11 | |||||
C950.1 | 950 | 1425 | 27 | 6 | 1 | 2850 | 3 | {6,3}15,10 | |||||
C960.1 | 960 | 1440 | 12 | 14 | 2 | 5760 | 6 | ||||||
C960.2 | 960 | 1440 | 18 | 12 | 2 | 5760 | 6 | ||||||
C960.3 | 960 | 1440 | 12 | 14 | 2 | 5760 | 6 | ||||||
C962.1 | 962 | 1443 | 27 | 6 | 1 | 2886 | 3 | {6,3}16,9 | |||||
C962.2 | 962 | 1443 | 29 | 6 | 1 | 2886 | 3 | {6,3}19,5 | |||||
C968.1 | 968 | 1452 | 29 | 6 | 2 | 5808 | 6 | {6,3}22,0 | |||||
C974.1 | 974 | 1461 | 29 | 6 | 1 | 2922 | 3 | ||||||
C976.1 | 976 | 1464 | 19 | 10 | 1 | 2928 | 3 | ||||||
C978.1 | 978 | 1467 | 28 | 6 | 1 | 2934 | 3 | {6,3}17,8 | |||||
C992.1 | 992 | 1488 | 29 | 6 | 1 | 2976 | 3 | {6,3}20,4 | |||||
C998.1 | 998 | 1497 | 29 | 6 | 1 | 2994 | 3 | {6,3}18,7 | |||||
C1000.1 | 1000 | 1500 | 15 | 10 | 2 | 6000 | 6 | ||||||
C1000.2 | 1000 | 1500 | 13 | 12 | 2 | 6000 | 6 |
See also
[edit]References
[edit]- ^ a b Biggs, Norman (1993). Algebraic Graph Theory (2nd ed.). Cambridge: Cambridge University Press. pp. 118–140. ISBN 0-521-45897-8.
- ^ Marston Conder, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput, vol. 20, pp. 41–63
- ^ Foster, R. M. "Geometrical Circuits of Electrical Networks." Transactions of the American Institute of Electrical Engineers 51, 309–317, 1932.
- ^ "The Foster Census: R.M. Foster's Census of Connected Symmetric Trivalent Graphs", by Ronald M. Foster, I.Z. Bouwer, W.W. Chernoff, B. Monson and Z. Star (1988) ISBN 0-919611-19-2
- ^ Biggs, p. 148
- ^ a b Weisstein, Eric W., "Cubic Symmetric Graph", from Wolfram MathWorld.
- ^ Coxeter, H. S. M.; Moser, W. O. J. (1980), Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 14 (4th ed.), Springer Verlag, ISBN 978-0-387-09212-6, 8.4 Maps of type {3,6} or {6,3} on a torus.
- ^ Trivalent (cubic) symmetric graphs on up to 10000 vertices. Marston Conder, 2011.
- Cubic symmetric graphs (The Foster Census). Data files for all cubic symmetric graphs up to 768 vertices, and some cubic graphs with up to 1000 vertices. Gordon Royle, updated February 2001, retrieved 2009-04-18.
- EDGE-TRANSITIVE CUBIC GRAPHS: CATALOGUING AND ENUMERATION MARSTON CONDER AND PRIMOZ POTOCN, 2025
- A refined classification of symmetric cubic graphs Marston Conder and Roman Nedela, 2009