From Wikipedia, the free encyclopedia
Deriving the equations in vectors
[edit]
- All constant are taken in capital letters
- All variable are given in small letter
Deriving v(t) = Ui + A (t - Ti)
[edit]

so <br\>

for zero or constant acceleration A we have

![{\displaystyle {\vec {v}}(t)={\vec {A}}\,[t]_{T_{i}}^{t}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e6a9033eab74c11422ea8c844bc660a1d1a70e9b)

we have one unknown K , we need to consider initial or final condition
- Lets take initially we have


ie

|
eq ... (1)
|
If we take final condition in consideration then ie :
|
eq ... (2)
|
constant acceleration can be found using initial and final condition
|
eq ... (3)
|
Deriving s(t) = Si + Ui(t-Ti) + (1/2)A (t - Ti)2
[edit]
now we have



![{\displaystyle {\vec {s}}(t)=({\vec {U}}_{i}-{\vec {A}}\,T_{i})\ {\Big [}t{\Big ]}_{T_{i}}^{t}+{\vec {A}}{\Bigg [}{\frac {t^{2}}{2}}{\Bigg ]}_{T_{i}}^{t}+K}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8e2a126438bb9d2d8f4661f75a232df50a58d15)

for eliminating K we need either final or initial condition ie





|
eq ... (4)
|
If we would have taken final condition ie
then
|
eq ... (5)
|
Taking
and putting eq (3) in eq (4) , we will get

Or

|
eq ... (6)
|
Deriving |v(t)|2 = |Ui|2 + 2 A . (s(t)-S_i)
[edit]






taking case for final velocity
|
eq ... (7)
|
or
|
eq ... (7)
|