From Wikipedia, the free encyclopedia
The Generalized log-logistic distribution (GLL) has three parameters
and
.
Generalized log-logisticParameters |
location (real)
scale (real)
shape (real) |
---|
Support |

 |
---|
PDF |

where  |
---|
CDF |

where  |
---|
Mean |

where  |
---|
Median |
 |
---|
Mode |
![{\displaystyle \mu +{\frac {\sigma }{\xi }}\left[\left({\frac {1-\xi }{1+\xi }}\right)^{\xi }-1\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a3234781adb448370f3a7d4073c460b630bdab66) |
---|
Variance |
![{\displaystyle {\frac {\sigma ^{2}}{\xi ^{2}}}[2\alpha \csc(2\alpha )-(\alpha \csc(\alpha ))^{2}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7608a00d698835b4f898f584eaf8983af7c6bd6c)
where  |
---|
The cumulative distribution function is

for
, where
is the location parameter,
the scale parameter and
the shape parameter. Note that some references give the "shape parameter" as
.
The probability density function is
![{\displaystyle {\frac {\left(1+{\frac {\xi (x-\mu )}{\sigma }}\right)^{-(1/\xi +1)}}{\sigma \left[1+\left(1+{\frac {\xi (x-\mu )}{\sigma }}\right)^{-1/\xi }\right]^{2}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0909a60aab0523829a4e3880207129fe3feb54a7)
again, for