Jump to content

Sorthat Formation

Coordinates: 55°05′N 14°25′E / 55.09°N 14.42°E / 55.09; 14.42
From Wikipedia, the free encyclopedia
Sorthat Formation
Stratigraphic range: Latest Pliensbachian to Latest Toarcian
~184–174 Ma Possible Lower Aalenian layers
Korsodde section of the Sorthat Formation, where the local Toarcian anoxic event stratum is located
TypeGeological formation
Unit ofBornholm Group
Sub-unitsSorthat & Levka beds
UnderliesBagå Formation
OverliesRønne & Hasle Formations
Thickness240 m (790 ft)[1]
Lithology
PrimaryClaystone, sandstone[1]
Location
Coordinates55°05′N 14°25′E / 55.09°N 14.42°E / 55.09; 14.42
Approximate paleocoordinatesApprox. 35°N
RegionBornholm
CountryDenmark, Germany (ex situ sandstones)
Type section
Named forSorthat-Muleby, Bornholm
Named byGry (as part of the Bagå Formation) [2]
Year defined1969
Sorthat Formation is located in Denmark
Sorthat Formation
Sorthat Formation (Denmark)

The Sorthat Formation is a geologic formation on Bornholm, Denmark, and the Rønne Graben, Baltic Sea, from the Latest Pliensbachian to Late Toarcian. It holds plant fossils and invertebrate traces, overlain by fluvial and lacustrine deposits of the Aalenian-Bathonian Bagå Formation.[2] Initially part of the Bagå Formation until 2003, it spans the Latest Pliensbachian to Early Aalenian.[3][4] It reflects a deltaic to marine setting with eastern river systems forming in the Toarcian.[2] Early Pliensbachian volcanism from southern Sweden extended across the North Sea.[5] The Central Skåne Volcanic Province and Egersund Basin contributed volcanic material, affecting tectonics.[5] Early Jurassic porphyritic nephelinite lavas in the Egersund Basin, akin to those in the formation’s clay pits, suggest fluvial sediment transport to the Grimmen Formation and Ciechocinek Formation.[5] The Grimmen Formation is its sister unit.

Description

[edit]
Sorthat Formation layers, mainly mudstones, claystones, and sandstone bands

Bornholm’s Lower-Middle Jurassic includes the Rønne (HettangianSinemurian), Hasle (Early–Late Pliensbachian), Sorthat, and Bagå Formations. Coal-bearing clays and sands overlie the Hasle Formation, divided between the Sorthat and Bagå.[1] The Sorthat Formation aligns with the Röddinge Formation, sharing a fluvial system, and correlates with the Ciechocinek Formation, Fjerritslev Formation, and Rya Formation.[1] Originally termed Levka, Sorthat, and Bagå beds, its key exposure is the Korsodde section.[2] Faulting and scarce marine fossils hinder stratigraphic clarity.[2] Palynological data from the Levka-1 core and Korsodde section date it to Late Pliensbachian–Toarcian, possibly Early Aalenian.[6][7][3] Megaspores indicate Toarcian–Aalenian strata.[8] It features bioturbated sands, heteroliths, clays, coal veins, and dinoflagellates, suggesting brackish to marine settings, capped by Bagå deposits.[6][1]

The Sorthat Formation’s lithology varies.[1] The Levka-1 well reveals fining-upward units, 3–14 m thick, with coarse sand, muddy, coal- and mica-rich sands, clays, and coal seams.[1] Parallel lamination dominates, with minor cross-bedding.[1] Abundant plant fragments and quartz, but no marine palynomorphs, indicate a coastal delta plain.[6] This mirrors the Ciechocinek Formation’s Toarcian–Bajocian deltaic shoreline.[9][10] The North German Basin shows four sea-level fluctuations forming delta generations, with Toarcian regressive deltas depositing 40 m in Prignitz and Brandenburg.[9] Palynomorphs tie to the Sorthat Formation.[9]

The upper formation (~40 m) has bioturbated sands, heteroliths, syneresis cracks, pyrite nodules, and ichnofossils like Planolites and Teichichnus, reflecting nearshore lagoons and channels.[1] The 93 m Korsodde section, with organic-rich sands, suggests fluvial channels tied to coastal lakes, with plant remains and ichnofossils like Diplocraterion.[1] The top features fine, yellowish-brown sands and sandstones with bioturbated, wave-rippled beds.[1]

At Korsodde, the environment includes the following:

Stratigraphy of the Korsodde section[11]
Unit Lithology Thickness (metres) Type of environment Fossil flora Fossil fauna

Unit A

Yellow, weakly cemented muscovite quartz sandstone, medium- to fine-grained in the lower part, fine-grained in the upper part.

0.45–2.3 m

Estuarine channel fill (upper or marginal, less energetic part)

None recovered

Unit B

Intercalations of muscovite quartz sandstones and dark mudstone drapes, with abundant heteroliths.

2.3–3.41 m

Upper tidal flat deposits surrounding an estuary

None recovered

  • Planolites isp.
  • Rosselia isp.
  • Palaeophycus isp.
  • B. tortuosus
  • D. parallelum

Unit C

Two main layers: a series of 20 cm dark mudstone with horizontal lamination and silt intercalations and a series of dark heteroliths with intercalated mudstones and ripple limestones.

3.41–3.7 m

Restricted bay passing into upper tidal flat deposits

None recovered

  • D. parallelum

Unit D

Yellow ripple cross sandstone with abundant muscovite, alternating with continuous and discontinuous dark mudstone with abundant organic material. There are pyrite concretions in the lower part.

3.7–4.7 m

Lower tidal flat within an estuary

Roots

  • Planolites isp.
  • Palaeophycus isp.
  • B. tortuosus
  • D. parallelum

Unit E

Mostly fine-grained sediments with abundant organic matter.

4.7–6.9 m

Lagoonal environment above a coal bed

  • Neocalamites sp. stems
  • Coal
  • Plant cuticles
  • Roots
  • Root structures

Unit F

Mostly pale, fine-grained, ripple cross muddy sandstone and normal sandstone, separated by thin, pale sandy mudstones or thin mudstone drapes.

6.9–9.9 m

Tidal flat deposits in an estuary

  • Lignites
  • Root structures
  • ?Thalassinoides isp.
  • ?Chondrites isp.
  • Rosselia isp.
  • Palaeophycus isp.
  • Planolites isp.
  • D. parallelum

Unit G

A prominent erosional surface at the start, composed of yellow medium- to fine-grained cross-laminated sandstones with muscovite.

9.9–11.35 m

Estuarine bar

None reported

None reported

Unit H

Pale, fine-grained ripple and herringbone sandstones and mudstones, with intercalations of sandy mudstones and mudstone drapes with intense ferruginization, and some layers of mudstone–sandstone heteroliths

11.35–14.2 m

Marginal part of an estuary channel fill

None reported

Unit I, J

Bioturbated muddy sandstone

14.2–14.4 m

Short-lived bay or lagoon

  • Rosselia isp.
  • Teichichnus isp.
  • Teichichnus zigzag
  • Planolites isp.
  • Thalassinoides isp.
  • Palaeophycus isp.

Biota

[edit]

The Sorthat Formation hosts a rich PliensbachianToarcian flora, one of Europe’s most complete for this period, with significant Jurassic palynological deposits.[4][7][8][12] The flora, including gymnosperms, ferns (e.g., Dicksonia, Coniopteris, Osmundaceae), and thin-cutinised leaves like Podozamites and Equisetales, suggests a warm, humid climate conducive to diverse vegetation.[13]

Environment

[edit]
Late Pliensbachian–Early Toarcian Fennoscandinavia, with flora based on the Sorthat Formation and fauna from the Lehmhagen Member, Grimmen Formation and Drzewica Formation.
Paleogeography of the North German basin in the Toarcian, showing the Grimmen Formation and Sorthat Formation extent.

The Sorthat Formation, deposited in the Rønne Graben and on Bornholm’s coasts, reflects a deltaic to marine environment, with the Grimmen Formation as its sister unit. A modern analog is New Zealand’s Northland humid coastal forests, where peat-forming woodlands thrive. The Stina-1 well shows sand, clay, and coal, indicating an emerged graben.[14] High kaolinite and reworked Carboniferous palynomorphs suggest erosion of a Carboniferous regolith.[15] A Late Pliensbachian regression allowed coal deposition, halted by an Early Toarcian transgression.[13] The Levka-1 well and Korsodde section show lagoons, channels, and floodplains, with rapid subsidence in the Rønne Graben during the Toarcian.[16] Shoreface deposits with bioturbation mark a deepening trend, correlating with the Fjerritslev Formation.[17] Depositional settings include the Levka Beds, interpreted as fluvial channels, floodplains, and peat swamps. Marine palynomorphs (e.g., Nannoceratopsis) indicate lagoonal settings.[18][19] The Sorthat Beds represent delta plain deposits with pyrite nodules and Arenicolites traces.[18] The Korsodde Section was a fluvial channel sands with coal and rootlets, transitioning to lagoons and palaeosols, with dinoflagellates (e.g., Mendicodinium).[18][19] Outside emerged Bornholm, offshore Rønne and Kolobrzeg grabens include mostly fluvial-coastal layers, fed by regional currents.[20]

The Sorthat Formation, with the Grimmen Formation as its sister unit, records significant vegetation changes during the Early Toarcian, linked to carbon cycle perturbations and the Toarcian oceanic anoxic event, driven by large-scale volcanism.[21] A modern analog is New Zealand’s Northland humid coastal forests, supporting peat-forming woodlands.

The Sorthat Fm was a cold, humid y forested setting, whose best modern analogs can be found in New Zealand
Stratigraphic map of Bornholm

In the Late Pliensbachian, pollen assemblages, dominated by Cupressaceae (e.g., Perinopollenites) and cycads (Cycadopites), indicate a warm, humid Mediterranean climate.[22] During the Toarcian event, spore-rich layers reflect a shift to ferns and lycophytes, suggesting increased humidity.[22] Post-event, Hirmeriellaceae pollen (e.g., Corollina, Spheripollenites) dominates, indicating a drier, warmer climate.[22] Woody vegetation shows changes in carbon isotopes, with pollen from Sciadopityaceae, Miroviaceae (Cerebropollenites), cycads (Chasmatosporites), and Corollina.[21] Macroflora, mainly from the Hasle clay pit and Korsodde section, includes 68 species, 50% ferns.[23][24][25] The Late Pliensbachian flora, rich in ferns and sphenophytes, grew in marshy floodplains along a meandering river, with Bennettites as shrubs and conifers (e.g., Pagiophyllum) and ginkgoaleans as trees, reflecting a warm, seasonal climate.[23] In the Toarcian, Hirmeriellaceae conifers (95% of pollen), seed ferns, Bennettites, and Czekanowskiales dominate, with Pagiophyllum and Corollina torosus indicating high temperatures, aridity, and seasonal wildfires.[26] Wood fragments, both macroscopic and microscopic (0.25–1 mm), are common in Korsodde’s nearshore deposits.[27]

Coal seams, mainly from Levka-1 and Korsodde, formed in anoxic, nutrient-rich swamps.[28] Peat accumulated rapidly (~1 mm/yr), akin to Central Kalimantan, in a warm, humid climate.[28][29] High huminite content (e.g., Eu-ulminite, densinite) indicates anoxic conditions.[28][30] Wildfires, evidenced by charcoal, increased during the Toarcian oceanic anoxic event, reflecting drier conditions.[31][32] Coals can be found at Levka-1 (112 m of coal, sand, and clay with abundant coalified wood), representing fluvial channels and floodplains with lagoons.[28] At Korsodde six coal seams from a coastal lagoon setting can be found, with huminite-rich coal and dinoflagellates like Mendicodinium reticulatum.[28]

Fungi

[edit]
Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Genus Species Stratigraphic position Material Notes Images

Fungi[18][28]

  • "Morphotype A"
  • "Morphotype B"
  • "Morphotype C"
  • Korsodde section
  • Fungal spores
  • Hyphae?

Fungal spores of uncertain classification. The three uppermost samples of the Korssode section are poor in diversity, but fungal spores are common in at least one sample; these have not been recorded from the samples below.

Extant Geastrum campestre specimen, found linked with plant matter. Spores recovered on the Sorthat Formation may be derived from similar fungi.

Phytoplankton

[edit]

In the Lower Jurassic of Bornholm there were several successions of nearshore peat formations with dinoflagellates.[28] Coal-bearing strata were deposited in an overall coastal plain environment during the HettangianSinemurian, and then during the Early Pliensbachian deposition was interrupted until the late Pliensbachian–Lowermost Toarcian due to a sea regression.[28]

Genus Species Stratigraphic position Material Notes Images

Baltisphaeridium[18]

  • B. infulatum
  • Korsodde section
Cysts

An algal acritarch, probably related to freshwater red algae, similar to extant Florideophyceae (for example, Hildenbrandia) or Batrachospermales (Batrachospermum) and Thoreales.

Extant Hildenbrandia; Baltisphaeridium may be derived from a similar genus

Botryococcus[18][28]

  • B. sp.
  • Korsodde section
  • Sorthat beds
  • Levka-1 borehole
Miospores

Type genus of the Botryococcaceae in the Trebouxiales. A colonial green microalga of freshwater and brackish ponds and lakes around the world, where it often can be found in large floating masses. Sorthat Formation Botryococcus lived in an environment interpreted as a coastal lake, permanently vegetated and shallow, that was occasionally flooded by the sea.

Extant specimen

Chomotriletes[4][7][8][12][33]

  • C. minor
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds
Miospores

Affinities with the family Zygnemataceae. A genus derived from freshwater filamentous or unicellular, uniseriate (unbranched) green algae.

Crassosphaera[18]

  • C. coccinia
  • C. hexagonalis
  • Korsodde section
Miospores

Affinities with the family Pycnococcaceae.

Cymatiosphaera[18]

  • C. sp.
  • Korsodde section
  • Sorthat beds
Miospores

Affinities with the family Pterospermopsidaceae.

Haplophragmoides[18]

  • H. tryssa
  • H. platus
  • H. sp.
  • Sorthat beds
Cysts

A foraminifer, member of the family Lituoloidea in the Lituolida.

Korystocysta[18]

  • K. sp.
  • Korsodde section
Cysts

A dinoflagellate, member of the Cribroperidinioideae.

Lecaniella[18][28]

  • L. foveata
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds
Miospores

Affinities with the family Zygnemataceae.

Leiosphaerida[18]

  • L. spp.
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds
Miospores

Affinities with the family Prasinophyceae.

Luehndea[18]

  • L. spinosa
  • Korsodde section
Cysts

A dinoflagellate, member of the Luehndeoideae. It establishes the Luehndea spinosa zone; the age of this zone is late Pliensbachian to early Toarcian.

Mancodinium[18][28]

  • M. semitabulatum
  • Korsodde section
Cysts

A dinoflagellate, type genus of the Mancodinioideae.

Mendicodinium[18][28]

  • M. groenlandicum
  • M. reticulatum
  • Korsodde section
  • Sorthat beds
Cysts

A dinoflagellate, member of the family Gonyaulacales.

Micrhystridium[18]

  • M. fragile
  • M. intromittum
  • M. lymensis
  • M. spp.
  • Korsodde section
  • Levka-1 borehole
Cysts

An acritarch, familia incertae sedis

Nannoceratopsis[18][28]

  • N. senex
  • N. gracilis
  • N. ridingui
  • N. triangulata
  • N. triceras
  • N. dictyanbonis
  • N. sp.
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds
Cysts

A dinoflagellate, member of the family Nannoceratopsiaceae. It is characteristic of marine deposits. The presence of N. gracilis, N. senex and N. triceras, and common occurrence of Botryococcus is interpreted as indicating a lagoon succession overlying a transgressive surface and signals a rise in relative sea level.

Ovoidites[18]

  • O. sp. A
  • O. sp. B
  • O. sp. C
  • O. spp.
  • Korsodde section
  • Levka-1 borehole
Miospores

Affinities with the family Zygnemataceae. A genus derived from freshwater filamentous or unicellular, uniseriate (unbranched) green algae.

Extant Spirogyra; Ovoidites may be derived from a similar genus

Pterospermella[18]

  • P. spp.
  • Korsodde section
Miospores

Affinities with the family Pterospermataceae.

Rotundus[18]

  • R. granulatus
  • Sorthat beds
Miospores

An algal palynomorph unique to the setting and probably related to freshwater red algae; similar to extant Batrachospermales.

Extant Batrachospermum

Spirillina[18]

  • S. sp.
  • Sorthat beds
Miospores

A foraminifer, type genus of the Spirillinidae in the Spirillinida.

Striatella[18]

  • S. jurassica
  • S. parva
  • S. seebergensis
  • S. scanica
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds
Miospores

Brown algae, type genus of the family Striatellaceae in the Striatellales. These brown algae diatoms are associated with either brackish or marginal marine environments.

Tasmanites[18]

  • T. sp.
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds
Miospores

Affinities with the family Pyramimonadaceae. Found on shoreface and shoreface–offshore transition zone deposits.

Tetraporina[18]

  • T. compressa
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds
Miospores

Affinities with the family Zygnemataceae.

Veryhachium[18]

  • V. spp.
  • Levka-1 borehole
Cysts

A dinoflagellate, member of the Dinophyceae.

Bryophyta

[edit]
Genus Species Stratigraphic position Material Notes Images

Cingutriletes[4][7][8][12]

  • C. infrapunctus
  • C. oculus
  • Korsodde section
Spores

Incertae sedis; affinities with Bryophyta. This spore is found in Jurassic sediments associated with the polar regions. The Sorthat Formation is among its southernmost locations.

Foraminisporis[4][7][8][12]

  • F. jurassicus
  • Korsodde section
Spores

Affinities with the family Notothyladaceae in the Anthocerotopsida. Hornwort spores.

Extant Notothylas specimens; Foraminisporis probably come from similar genera.

Polycingulatisporites[4][7][8][12]

  • P. circulus
  • P. liassicus
  • P. triangularis
  • Levka-1 borehole
  • Korsodde section
Spores

Affinities with the family Notothyladaceae in the Anthocerotopsida. Hornwort spores.

Sculptisporis[4][7][8][12]

  • S. aulosenensis
  • Sorthat beds
  • Korsodde section
Spores

Affinities with the family Sphagnaceae in the Sphagnopsida.

Staplinisporites[4][7][8][12]

  • S. caminus
  • Korsodde section
Spores

Affinities with the family Encalyptaceae in the Bryopsida. Branching moss spores, indicating high water-depleting environments.

Extant Encalypta specimens; Staplinisporites probably come from similar genera

Stereisporites[4][7][8][12]

  • S. antiquasporites
  • S. stereoides
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section
Spores

Affinities with the family Sphagnaceae in the Sphagnopsida. "Peat moss" spores, related to genera such as Sphagnum that can store large amounts of water.

Extant Sphagnum specimens; Stereisporites, Sculptisporis and Rogalskaisporites probably come from similar genera

Taurocusporites[4][7][8][12]

  • T. verrucatus
  • Korsodde section
Spores

Affinities with the family Sphagnaceae in the Sphagnopsida.

Rogalskaisporites[4][7][8][12]

  • R. cicatricosus
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section
Spores

Affinities with the family Sphagnaceae in the Sphagnopsida.

Lycophyta

[edit]
Genus Species Stratigraphic position Material Notes Images

Anapiculatisporites[4][7][8][12]

  • A. spiniger
  • A. sp.
  • Levka-1 borehole
  • Korsodde section

Spores

Affinities with the Selaginellaceae in the Lycopsida. Herbaceous lycophyte flora, similar to ferns, found in humid settings. This family of spores are also the most diverse in the formation.

Extant Selaginella, typical example of Selaginellaceae. Genera like Anapiculatisporites or Densoisporites probably come from a similar or a related Plant

Cadargasporites[4][7][8][12]

  • C. granulatus
  • Korsodde section

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Camarozonosporites[4][7][8][12]

  • C. golzowensis
  • C. rudis
  • Korsodde section

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Kraeuselisporites[4][7][8][12]

  • K. reissingeri
  • Korsodde section

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Neoraistrickia[4][7][8][12]

  • N. gristhorpensis
  • N. sp.
  • Levka-1 borehole
  • Sorthat beds
  • Korsode section

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Retitriletes[4][7][8][12]

  • R. austroclavatidites
  • R. clavatoides
  • R. semimurus
  • R. spp.
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Selaginellites[34][35][36]

  • S. falcatus
  • Hasle clay pit

Fine stems

Affinities with Selaginellaceae and Lycopodiidae in the Lycopodiales. It was originally described as Lycopodites falcatus. The leaves of this species are more prominently anisophyllous than in the Raheto-Hettangian S. coburgensis from Franconia.[37]

Sestrosporites[4][7][8][12]

  • S. pseudoalveolatus
  • Sorthat beds
  • Korsodde section

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida. Lycopod spores, related to herbaceous to arbustive flora common in humid environments.

Extant Lycopodium specimens. Genera like Sestrosporites, Camarozonosporites, Retitriletes, Lycopodiumsporites and Semiretisporis probably come from a similar plant

Uvaesporites[4][7][8][12]

  • U. argenteaeformis
  • U. microverrucatus
  • U. puzzlei
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Equisetales

[edit]
Genus Species Stratigraphic position Material Notes Images

Calamospora[4][7][8][12]

  • C. tener
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Spores

Affinities with the Calamitaceae in the Equisetales. Horsetails are herbaceous flora found in humid environments and are flooding-tolerant. In the sections of the formation such as Korsodde, this genus has small peaks in abundance in the layers where more Equisetites stems are found.

Reconstruction of the genus Calamites, found associated with Calamospora

Equisetites[14][28]

  • E. munsteri
  • E. lyelli
  • E. sp.
  • Bagagraven clay pit
  • Nebbeodde
  • Stina-1 well

Stems

Affinities with Equisetaceae in the Equisetales. Related equisetalean stems are found in the Hettangian strata along Skane, Sweden. In the lagoonar sections there is correlation between bioturbation and transported Equisetites stems.[22] Local Equisetales reached a considerable size, comparable to modern subtropical bamboos, close to lakes and in the wettest environments.[28]

Equisetites specimen

Neocalamites[24][25][34][38][35][22][23][28]

  • N. hoerensis
  • N. sp.
  • Korsodde section
  • Bagagraven clay pit
  • Three incomplete axes
  • Isolated Incomplete fragments

Affinities with Calamitaceae in the Equisetales. Related equisetalean stems are found in strata of the same age along Skane, Sweden. Based on analogies with morphologically similar extant Equisetum species, it is interpreted to represent a plant of consistently moist habitats, such as marshes, lake margins or forest understorey, normally developing dense thickets.

Neocalamites specimen

Phyllotheca[24][25][34][35]

  • P. cf. equisetiformis
  • Hasle clay pit

Leaf whorls

Affinities with Equisetidae in the Equisetales.

Pteridophyta

[edit]
Genus Species Stratigraphic position Material Notes Images

Annulispora[4][7][8][12]

  • A. folliculosa
  • Korsodde section

Spores

Affinities with the genus Saccoloma, type representative of the family Saccolomataceae. This fern spore resembles those of the living genus Saccoloma, being probably from a pantropical genus found in wet, shaded forest areas.

Extant Saccoloma specimens; Annulispora probably comes from similar genera or maybe a species in the genus

Baculatisporites[4][7][8][12]

  • B. comaumensis
  • B. primarius
  • B. wellmanii
  • B. sp.
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds

Spores

Affinities with the family Osmundaceae in the Polypodiopsida. Near fluvial current ferns, related to the modern Osmunda regalis.

Extant Osmunda specimens; Baculatisporites and Todisporites probably come from similar genera or maybe a species from the genus

Cladophlebis[24][25][34][38][35][23]

  • C. nebbensis
  • C. roesserti
  • C. svedbergii
  • C. hirta
  • Vellengsby
  • Bagagraven clay pit
  • Hasle clay pit
  • Nebbeodde
  • Isolated pinnae

Affinities with Osmundaceae in the Osmundales. Related to species commonly reported from the Triassic–Jurassic of southern Sweden.

Cladophlebis nebbensis specimen

Cladotheca[34][35][39]

  • C. undans
  • Bagagraven clay pit
  • Fertile pinna fragments

Affinities with Osmundaceae in the Osmundales. Specimens assigned to this morphothype have been found in the Middle Jurassic flora of Yorkshire, associated with Todites miospores, and were originally described as Asplenites cladophleboides.

Cibotiumspora[4][7][8][12]

  • C. jurienensis
  • Sorthat beds
  • Korsodde section

Spores

Affinities with the family Cyatheaceae in the Cyatheales. Arboreal fern spores.

Clathropteris[38][35]

  • C. meniscioides
  • C. platyphylla
  • Bagagraven clay pit
  • Hasle clay pit
  • Nebbeodde
  • Isolated pinnae

Affinities with Dipteridaceae in the Polypodiales.

Clathropteris meniscioides specimen

Conbaculatisporites[4][7][8][12]

  • C. mesozoicus
  • C. spinosus
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Spores

Incertae sedis; affinities with the Pteridophyta

Coniopteris[24][25][34][38][35][23]

  • C. hymenophylloides
  • C. acutidens
  • Bagagraven clay pit

Incomplete frond fragment

Affinities with Polypodiales in the Polypodiidae. Common cosmopolitan Mesozoic fern genus. Recent research has reinterpreted it a stem group of the Polypodiales (closely related to the extant genera Dennstaedtia, Lindsaea, and Odontosoria).[40]

Coniopteris specimen

Deltoidospora[4][7][8][12]

  • D. minor
  • D. toralis
  • D. spp.
  • Korsodde section
  • Levka beds
  • Sorthat beds

Spores

Incertae sedis; affinities with the Pteridophyta

Dicksonia[38][35]

  • D. pingelii
  • D. pauciloba
  • Bagagraven clay pit
  • Hasle clay pit

Leaflets

Affinities with Dicksoniaceae in the Cyatheales. It show similarities with Sphenopteris longipinnata in the morphological outline of the leaflets and the keels of the pinnate axis.

Extant Dicksonia

Dictyophyllum[24][25][34][38][35][23]

  • D. acutilobium
  • D. munsteri
  • D. barthollini
  • D. cf. nilssonii
  • D. cf. spectabile
  • Vellengsby
  • Bagagraven clay pit
  • Hasle clay pit
  • Isolated pinnae

Affinities with Dipteridaceae in the Polypodiales. Dictyophyllum is a common dipteridacean genus of the mid-Mesozoic.

Dictyophyllum nilssonii specimen

Eboracia[24][25][34][38][35][23]

  • E. lobifolia
  • E. sp.
  • Bagagraven clay pit
  • Hasle clay pit
  • Vellengsby
  • Isolated pinnae

Affinities with Dicksoniaceae in the Cyatheales. The Lund material is dominated by ferns belonging to the genus Eboracia (28 specimens of E. lobifolia and 14 of another Eboracia sp.). The latter has smaller pinnules than E. lobifolia.

Gleicheniidites[4][7][8][12]

  • G. senonicus
  • Levka-1 borehole
  • Korsodde section

Spores

Affinities with the Gleicheniales in the Polypodiopsida. Fern spores from low herbaceous flora.

Extant Gleichenia specimens; Gleicheniidites and Iraqispora probably come from similar genera or maybe a species in the genus

Gutbiera[38][35]

  • G. angustiloba
  • Vellengsby
  • Nebbeodde

Isolated pinnae

Affinities with Matoniaceae in the Gleicheniales.

Hausmannia[24][25][34][38][35][23]

  • H. crenata
  • H. dichotoma
  • H. dentata
  • H. lasciniata
  • H. acutidens
  • Bagagraven clay pit
  • Hasle clay pit

Isolated pinnae

Affinities with Dipteridaceae in the Polypodiales. Specimens from the same species have been found in the Hettangian Höör Sandstone at southern Sweden.

Hausmannia specimen

Intrapunctisporis[4][7][8][12]

  • I. toralis
  • Sorthat beds

Spores

Incertae sedis; affinities with the Pteridophyta

Iraqispora[4][7][8][12]

  • I. labrata
  • Korsodde section

Spores

Affinities with the Gleicheniales in the Polypodiopsida. Fern spores from low herbaceous flora.

Ischyosporites[4][7][8][12]

  • I. crateris
  • I. variegatus
  • Levka-1 borehole
  • Korsodde section

Spores

Incertae sedis; affinities with the Pteridophyta

Klukisporites[4][7][8][12]

  • K. lacunus
  • Korsodde section

Spores

Affinities with the family Lygodiaceae in the Polypodiopsida. Climbing fern spores.

Extant Lygodium; Lygodioisporites probably comes from similar genera or maybe a species from the genus

Laevigatosporites[4][7][8][12]

  • L. mesozoicus
  • Korsodde section
  • Levka-1 borehole

Spores

Incertae sedis; affinities with the Pteridophyta

Leptolepidites[4][7][8][12]

  • L. bossus
  • L. macroverrucosus
  • L. major
  • L. sp.
  • Korsodde section

Spores

Affinities with the family Dennstaedtiaceae in the Polypodiales. Forest fern spores.

Extant Dennstaedtia specimens; Leptolepidites probably comes from similar genera

Lycopodiacidites[4][7][8][12]

  • L. infragranulatus
  • L. infragranulatus
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Spores

Affinities with the Ophioglossaceae in the Filicales. Fern spores from lower herbaceous flora.

Extant Helminthostachys specimens; Lycopodiacidites probably comes from similar genera or maybe a species from the genus

Manumia[4][7][8][12]

  • M. delcourtii
  • Levka-1 borehole
  • Sorthat beds
  • Kosodde section

Spores

Affinities with the Pteridaceae in the Polypodiopsida. Forest ferns from humid ground locations.

Extant Pityrogramma specimens; Contignisporites and Manumia probably come from similar genera or maybe a species in the genus

Marattia[38][35]

  • M. munsteri
  • Vellengsby

Isolated pinnae

Affinities with Marattiaceae in the Marattiopsida.

Extant Marattia specimen

Marattisporites[4][7][8][12]

  • M. scabratus
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Spores

Affinities with the Marattiaceae in the Polypodiopsida. Fern spores from low herbaceous flora.

Extant Marattia specimens; Marattisporites probably comes from similar genera

Phlebopteris[38][35]

  • P. schouwii
  • P. elegans
  • P. mirovensis
  • P. woodwardii
  • P. affinis
  • P. polypodioides
  • Vellengsby
  • Bagagraven clay pit
  • Hasle clay pit
  • Nebbeodde
  • Isolated pinnae

Affinities with Matoniaceae in the Gleicheniales.

Phlebopteris specimen

Skarbysporites[4][7][8][12]

  • S. crassexinius
  • Sorthat beds
  • Korsodde section

Spores

Incertae sedis; affinities with the Pteridophyta

Spiropteris[24][25][34][38][35][23]

  • S. sp.
  • Bagagraven clay pit
  • Single impression

Incertae ordinis in the Pteridophyta. Spiropteris is the name given to the fossil of a coiled, unopened fern leaf.

Tigrisporites[4][7][8][12]

  • T. halleinis
  • T. microrugulatus
  • Sorthat beds
  • Korsodde section

Spores

Incertae sedis; affinities with the Pteridophyta

Thaumatopteris[24][25][34][35]

  • T. brauniana
  • Vellengsby
  • Bagagraven clay pit

Isolated pinnae

Affinities with Dipteridaceae in the Polypodiales.

Thaumatopteris specimen

Todisporites[4][7][8][12]

  • T. major
  • T. minor
  • Levka-1 borehole
  • Sorthat beds

Spores

Affinities with the family Osmundaceae in the Polypodiopsida.

Tripartina[4][7][8][12]

  • T. variabilis
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section
  • Spores

Affinities with the genus Dicksoniaceae in the Polypodiopsida. Tree fern spores.

Extant Lophosoria specimens; Tripartina and Undulatisporites probably come from similar genera

Verrucosisporites[4][7][8][12]

  • V. obscurilaesuratus
  • Korsodde section

Spores

Incertae sedis; affinities with the Pteridophyta

Vesicaspora[4][7][8][12]

  • V. fuscus
  • Korsodde section

Spores

Affinities with the Callistophytaceae in the Callistophytales. Spores from large arboreal to arbustive ferns.

Zebrasporites[4][7][8][12]

  • Z. interscriptus
  • Korsodde section

Spores

Affinities with the family Cyatheaceae in the Cyatheales. Arboreal fern spores.

Extant Cyathea; Zebrasporites and Cibotiumspora probably come from similar genera

"Peltaspermales"/Indet. Spermatophytes

[edit]
Genus Species Stratigraphic position Material Notes Images

Alisporites[4][7][8][12]

  • A. grandis
  • A. radialis
  • A. robustus
  • A. thomasii
  • A. microsaccus
  • A. diaphanus
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Pollen

Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae in the Peltaspermales. Pollen of uncertain provenance that can be derived from any of the members of the Peltaspermales. The lack of distinctive characters and poor conservation make this pollen difficult to classify. Arboreal to arbustive seed ferns.

Carpolithes[24][25][34]

  • C. cinctus
  • C. nebbensis
  • C. nummularius
  • Vellengsby
  • Bagagraven clay pit
  • Nebbeodde
Plant propagules

Plant propagules that may be from Pteridospermatophyta, Vladimariales, Bennettitales or Pinales. Fruits or seeds of uncertain placement.

Cephalotaxus fruits. Some Carpolithes are similar conifer-derived propagules.

Ctenozamites[41]

  • C. leckenbyi
  • Bagagraven clay pit
Isolated pinnae

Affinities with Umkomasiaceae in the Pteridospermatophyta.

Cycadopteris[34][35]

  • C. heterophylla
  • C. brauniana
  • Bagagraven clay pit

Isolated pinnae

Affinities with Corystospermaceae in the Pteridospermatophyta.

Cycadopteris specimen

Feildenia[24][25][34][38]

  • F. cuspiformis
  • Hasle clay pit

Leaf compressions

Affinities with Umaltolepidaceae in the Vladimariales. These belong to a group parallel to Gingkoaceans and derived probably from Umkomasiaceae.

Kekryphalospora[4][7][8][12]

  • K. distincta
  • Sorthat beds
  • Levka-1 borehole
  • Korsodde section

Pollen

Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae in the Peltaspermales.

Komlopteris[42]

  • K. nordenskioeldii
  • Vellengsby
  • Korsodde section

Isolated pinnae

Affinities with Umkomasiaceae in the Pteridospermatophyta.

Pachypteris[26][41]

  • P. laceolata
  • P. papillosa
  • Vellengsby
  • Korsodde section

Isolated pinnae

Affinities with Umkomasiaceae in the Pteridospermatophyta. Less common than other arboreal plants.

Ptilozamites[34][38][35]

  • P. falcatus
  • P. cycadea
  • Bagagraven clay pit

Isolated pinnae

Affinities with Umkomasiaceae in the Pteridospermatophyta.

Ptilozamites specimen

Pteridospermae[26]

Indeterminate
  • Korsodde section
Cuticles

Affinities with Pteridospermae in the Pteridospermatophyta.

Sagenopteris[34][38][35][26]

  • S. cuneata
  • S. phillipsi
  • S. rhoifolia
  • S. nilssoniana
  • S. undulata
  • S. sp.
  • Vellengsby
  • Bagagraven clay pit

Isolated pinnae

Affinities with Caytoniaceae in the Pteridospermatophyta. Related to seed ferns present in the Rhaetic flora of Sweden.

Sagenopteris specimen

Vitreisporites[4][7][8][12]

  • V. bjuvensis
  • V. pallidus
  • Levka-1 borehole
  • Korsodde section

Pollen

From the family Caytoniaceae in the Caytoniales. Caytoniaceae are a complex group of Mesozoic fossil floras that may be related to both Peltaspermales and Ginkgoaceae.

Erdtmanithecales

[edit]
Genus Species Stratigraphic position Material Notes Images

Eucommiidites[4][7][8][12]

  • E. major
  • E. troedssonii
  • E. sp.
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Pollen

Type pollen of the Erdtmanithecales, related to the Gnetales. Thick tectum, infratectum of small granules, indistinct or absent foot layer. Originally thought to come from angiosperms, then suggested to come from arbustive Bennettites. It was recently found to come from Eucommiitheca, a member of the enigmatic Erdtmanithecales, reinterpreted as an unusual gymnosperm grain with a single distal colpus flanked by two subsidiary lateral colps. Is very similar to the pollen of the extant Ephedra and Welwitschia (mainly on the basis of the granular structure of the exine).[43]

Cycadophyta

[edit]
Genus Species Stratigraphic position Material Notes Images

Butefia[44]

  • B. ensiformis
  • Bagagraven clay pit
Leaflets

Affinities with Cycadales in the Cycadopsida. Originally described as Podozamites ensiformis.

Chasmatosporites[4][7][8][12]

  • C. apertus
  • C. elegans
  • C. hians
  • C. major
  • C. minor
  • Levka-1 borehole
  • Korsodde section
Pollen

Affinities with the family Zamiaceae in the Cycadales. It is among the most abundant flora recovered on the upper section of the coeval Rya Formation, and was found to be similar to the pollen of the extant Encephalartos laevifolius.[45]

Extant Encephalartos laevifolius. Chasmatosporites may come from a related plant

Clavatipollenites[4][7][8][12]

  • C. hughesii
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section
Pollen

Affinities with the family Cycadaceae in the Cycadales. The structure of the exine of Clavatipollenites hughesii from Jurassic deposits is fundamentally different from that of Cretaceous grains referred to the same species, confirming observations made previously on the basis of analysis under the light microscope and suggesting a possible derivation from cycadalean rather than angiospermous plants.[46]

Extant Cycas platyphylla. Clavatipollenites may come from a related plant

Ctenis[25][34][35]

  • C. nathorsti
  • Hasle clay pit

Leaflets

Affinities with Cycadales in the Cycadopsida.

Ctenis specimen

Bennettitales

[edit]
Genus Species Stratigraphic position Material Notes Images

Cycadopites[22]

  • C. nitidus
  • C. andrewsii
  • Korsodde section
Pollen

Affinities with the family Cycadaceae and Bennettitaceae. It has been found associated with the Bennetite pollen cone Bennettistemon. It increases towards the Toarcian section.

Dictyozamites[34][38][35][47]

  • D. johnsirupi
  • Bagagraven clay pit

Leaflets

Affinities with Williamsoniaceae in the Bennettitales.

Nilssonia[24][25][34][38][35]

  • N. polymorpha
  • Nilssonia münsteri
  • N. acuminata
  • Vellengsby
  • Bagagraven clay pit
  • Nebbeodde

Leaflets

Affinities with Cycadeoidaceae in the Bennettitales. The most common and abundant bennetite on the formation.

Nilssonia specimen

Nilssoniopteris[48]

  • N. tenuinervis
  • N. glandulosa
  • Bagagraven clay pit
  • Hasle clay pit

Leaflets

Affinities with Cycadeoidaceae in the Bennettitales.

Otozamites[14][24][25][34][38][35][23]

  • O. bornholmiensis
  • O. latior
  • O. bartholini
  • O. tenuissimus
  • O. bunburyanus
  • O. obtusus
  • O. pusillus
  • O. beani
  • O. pterophylloides
  • O. molinianus
  • O. cf. reglei
  • O. cf. mimetes
  • Vellengsby
  • Bagagraven clay pit
  • Stina-1 well

Leaflets

Affinities with Williamsoniaceae in the Bennettitales. Insufficient and incomplete material prevents certain assignment of Otozamites cf. reglei and Otozamites cf. mimetes

Otozamites specimen

Pterophyllum[24][25][34][38]

  • P. tenuicaule
  • P. carnallianum
  • P. cf. aequale
  • P. cf. braunianum
  • Vellengsby
  • Bagagraven clay pit

Leaflets

Affinities with Williamsoniaceae in the Bennettitales.

Pterophyllum specimen

Williamsonia[38][35]

  • W. forchhammeri
  • Nebbeodde
Bennettitalean "flower"

Affinities with Williamsoniaceae in the Bennettitales.

Williamsonia "flower"

Ginkgoales

[edit]
Genus Species Stratigraphic position Material Notes Images

Baiera[24][25][34][38][26]

  • B. czekanowskiana
  • B. pulchella
  • B. sp.
  • Korsodde section
  • Bagagraven clay pit
  • Vellengsby
Leaf compressions; Cuticles

Affinities with Karkeniaceae in the Ginkgoales. Unlike other plant specimens from the location, it is more characteristic of Middle Jurassic flora.

Baiera specimen

Czekanowskia[38][26]

  • C. hartzii
  • C. cf. setacea
  • Korsodde section
  • Hasle clay pit
  • Vellengsby
Leaf compressions; Cuticles

Affinities with Czekanowskiales in the Ginkgoales. This genus is related to flora from the Rhaetian–Hettangian boundary of Jameson Land, but also present in Romania.

Hartzia[24][25][34][26]

  • H. tenuis
  • H. sp.
  • Korsodde section
Leaf compressions; Cuticles

Affinities with Czekanowskiales in the Ginkgoales. Linked to the Lower Liassic flora of Greenland.

Ginkgoites[24][25][34][38][35][23][26]

  • G. troedssonii
  • G. sibirica
  • G. obovata
  • Korsodde section
  • Bagagraven clay pit
  • Hasle clay pit
  • Nebbeodde
Leaf compressions; Cuticles

Affinities with Ginkgoaceae in the Ginkgoales. Seven species assigned to either Ginkgo or Ginkgoites have been reported from Latest Triassic to middle Jurassic strata of southern Sweden.

Ginkgoites sibirica reconstruction

Monosulcites[4][7][8][12]

  • M. minimus
  • M. punctatus
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section
Pollen

Affinities with the family Karkeniaceae and Ginkgoaceae in the Ginkgoales. Had been considered pollen of Chloranthaceae but is likely from Ginkgoales, which can have similar features

Extant Ginkgo, the only surviving member of the Ginkgoaceae. Monosulcites pollen is similar to the pollen of this extant species.

Solenites[26]

  • S. murrayana
  • Korsodde section
Leaf compressions; Cuticles

Affinities with Czekanowskiales in the Ginkgoales. This species was described on the basis of individuals collected in Greenland from the Triassic–Jurassic boundary.

Coniferophyta

[edit]
Genus Species Stratigraphic position Material Notes Images

Agathoxylon[49]

  • A. württembergica
  • Bagagraven clay pit
Fossil Wood

Affinities with Hirmeriellaceae or Araucariaceae in the Pinales. Originally Araucarioxylon württembergica. This genus is usually associated with leaf-bearing twigs referred to as Pagiophyllum, abundant in the Sorthat Formation.

Agathoxylon

Araucariacites[4][7][8][12]

  • A. australis
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section
Pollen

Affinities with Araucariaceae in the Pinales.

Bartholinodendron[14][50][51]

  • B. punctulatum
  • Bagagraven clay pit
  • Hasle clay pit
Fragmentary axis compressions with preserved leaves

Affinities with Taxaceae in the Pinales. Was first identified in Bornholm. Is similar to the cretaceous Taxus huolingolensis and extant Taxus in leaf gross morphology and has papillate abaxial cuticles, probably being close to this genus.[52]

Brachyphyllum[24][25][34][38][50][26]

  • B. mamillare
  • B. sp.
  • Vellengsby
  • Korsodde section
Fragmentary axis compressions with preserved leaves; Coalified fragments; Cuticles

Affinities with Araucariaceae or Hirmeriellaceae in the Pinales. Is related to the Hettangian axis found in Scania, Sweden

Brachyphyllum specimen

Callialasporites[4][7][8][12]

  • C. dampieri
  • C. turbatus
  • C. microvelatus
  • C. segmentatus
  • Sorthat beds
  • Korsodde section
Pollen

Affinities with the family Araucariaceae in the Pinales. Conifer pollen from medium to large arboreal plants.

Extant Araucaria. Callialasporites may come from a related plant

Cerebropollenites[4][7][8][12]

  • C. macroverrucosus
  • C. thiergartii
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section
Pollen

Affinities with both Sciadopityaceae and Miroviaceae in the Pinopsida. This pollen's resemblance to extant Sciadopitys suggest that Miroviaceae may be an extinct lineage of Sciadopityaceae-like plants.[53]

Extant Sciadopitys. Cerebropollenites likely come from a related plant

Corollina[4][7][8][12]

  • C. torosus
  • C. meyeriana
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Cyparissidium[50][26]

  • C. blackii
  • Korsodde section
Coalified fragments; Cuticles

Affinities with Cupressoideae in the Cupressales. It matches with the Middle Jurassic Cyparissidium blackii from Yorkshire, England.

Dactylethrophyllum[54]

  • D. ramonensis
  • Korsodde section
Coalified fragments; Cuticles

Affinities with Hirmeriellaceae in the Pinales. It is related to other representatives of the genus of the Toarcian of Italy and Lower Jurassic of Israel. Spheripollenites co-occurs with cuticles of Dactylethrophyllum ramonensis, and the species S. psilatus may be produced by the conifer genus Dactylethrophyllum.[54]

Elatocladus[50][55]

  • E. subzamioides
  • Bagagraven clay pit
Fragmentary axis compressions with preserved leaves

Affinities with Thujaceae in the Cupressales. It was originally described as Taxites? subzamioides, later merged with Elatocladus.

Elatocladus specimen

Exesipollenites[4][7][8][12]

  • E. tumulus
  • Korsodde section

Pollen

Affinities with the family Cupressaceae in the Pinopsida. Pollen that resembles that of extant genera such as the genus Actinostrobus and Austrocedrus, probably derived from dry environments.

Extant Austrocedrus. Exesipollenites and Perinopollenites maybe come from a related plant

Hirmeriella[38][50]

  • H. münsteri
  • Bagagraven clay pit
Ovuliferous Cones

Affinities with Hirmeriellaceae in the Pinales. The main genus of the Hirmeriellaceae, found in dry environments and probably fire tolerant.

Quadraeculina[4][7][8][12]

  • Q. anellaeformis
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Pollen

Affinities originally suggested with the family Podocarpaceae in the Pinopsida. Quadraeculina is not comparable to pollen of any modern gymnosperm family.

Lindleycladus[56]

  • L. lanceolatus
  • Hasle clay pit
  • Bagagraven clay pit
Leaf compressions; Cuticles

Affinities with Krassiloviaceae in the Voltziales.

Marskea[50][57]

  • M. jurassica
  • Bagagraven clay pit
Fragmentary axis compressions with preserved leaves

Affinities with Taxaceae in the Pinales. Originally described as Taxus jurassica.

Pagiophyllum[24][25][34][38][35][50][23]

  • P. kurrii
  • P. peregrinum
  • P. johnstrupi
  • P. falcatum
  • P. sp.
  • Korsodde section
  • Bagagraven clay pit
  • Hasle clay pit
Fragmentary axis compressions with preserved leaves; Coalified fragments; Cuticles

Affinities with Araucariaceae or Hirmeriellaceae in the Pinales. P. kurrii (originally P. steenstrupi) is preferred as this species is characterised by relatively broad leaves inserted at high angles to the stem. P. peregrinum has been found on the Hettangian Rønne Formation associated with hirmeriellidaceous wood of Simplicioxylon. On the Toarcian levels, is the most common plant cuticle recovered locally.

Pagiophyllum specimen

Paleopicea[4][7][8][12]

  • P. glaesaria
  • Korsodde section

Pollen

Affinities with the family Pinaceae in the Pinopsida. Conifer pollen from medium to large arboreal plants.

Extant Picea. Paleopicea and Pinuspollenites may come from a related plant

Palissya[38][50]

  • P. sphenolepis
  • P. sternbergi
  • Vellengsby
  • Nebbeodde
Ovuliferous Cones

Affinities with Palissyaceae in the Palissyales. Descriptions of Palissya come mostly from coeval deposits in the Northern Hemisphere, based on a very few specimens from Sweden, Germany and America.

Perinopollenites[4][7][8][12]

  • P. elatoides
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Pollen

Affinities with the family Cupressaceae in the Pinopsida.

Pinuspollenites[4][7][8][12]

  • P. minimus
  • P. pinoides
  • Levka-1 borehole
  • Sorthat beds
  • Korsodde section

Pollen

Affinities with the family Pinaceae in the Pinopsida.

Pityophyllum[24][25][34][38]

  • P. angustifolium
  • Bagagraven clay pit
  • Hasle clay pit
  • Vellengsby
Leaf compressions; Cuticles

Affinities with Schizolepisaceae in the Pinaceae. This genus is found associated with Schizolepis on many places, making diverse authors to put both on Pinaceae.

Pityocladus[51]

  • P. longifolius
  • Bagagraven clay pit
  • Hasle clay pit
  • Vellengsby
Leaf compressions; Cuticles

Affinities with Schizolepisaceae in the Pinaceae.

Podozamites[14][38][50][13]

  • P. angustifolius
  • P. cuspiformis
  • P. agardhianus
  • P. schenkii
  • P. gramineus
  • P. sp.
  • Hasle clay pit
  • Bagagraven clay pit
  • Korsodde section
  • Vellengsby
  • Stina-1 well
Fragmentary axis compressions with preserved leaves; Coalified fragments; Cuticles

Affinities with Krassiloviaceae in the Voltziales. The local Podozamites show a great range of growth, reflecting tropical to subtropical conditions.

Podozamites reconstruction

Schizolepidopsis[38][50][58]

  • S. follini
  • Vellengsby
  • Bagagraven clay pit
Ovulate strobili

Affinities with Schizolepisaceae in the Pinaceae. Placed in the Pinaceae on the basis of separated scales and bract scales.

Sewardiodendron[50][59]

  • S. steenstrupii
  • Bagagraven clay pit
  • Hasle clay pit
Fragmentary axis compressions with preserved leaves

Affinities with Cunninghamioideae in the Cupressales. Cunninghamia-like conifers belonging to half-evergreen trees.

Simplicioxylon[14][49]

  • S. rotnaensis
  • Bagagraven clay pit
  • Stina-1 well
Fossil Wood

Affinities with Hirmeriellaceae in the Pinales. Originally identified as Brachyoxylon rotnaensis, now thought to be a synonym of Simplicioxylon.[60] Wood from these conifers is also found in the HettangianSinemurian Rønne Formation and the Toarcian Úrkút Manganese Ore Formation.

Spheripollenites[4][7][8][12][54]

  • S. psilatus
  • S. subgranulatus
  • S. subscabratus
  • Korsodde section
  • Levka-1 borehole
  • Sorthat beds

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida. Spheripollenites psilatus composes up to 95% of the Lower Toarcian section and is correlated with Toarcian carbon cycle anomalies including the oceanic anoxic event, suggesting dry climates.[54]

Stachyotaxus[38][50]

  • S. septentrionalis
  • Hasle clay pit
Fragmentary axis compressions with preserved leaves

Affinities with Palissyaceae in the Palissyales.

Stachyotaxus specimens

Torreya[50][51]

  • T. moelleri
  • Bagagraven clay pit
Fragmentary axis compressions with preserved leaves

Affinities with Taxaceae in the Pinales. Known only from Bornholm and belongs to an extant genus. This species is related to the Middle Jurassic floras of Yorkshire.

Extant Torreya specimen

Amber

[edit]
Type Location Material Notes

Amber[61]

Sorthat beds

Amber fragments

B. Eske Koch corroborated the presence of amber drops in the Sorthat Formation. This record represents one of the few worldwide from Jurassic layers.[61] This amber was quoted as derived from Coniferales indet.[61]

Ichnofossils

[edit]
Genus Species Location Material Origin Images

Arenicolites[18]

  • A. isp.
  • Levka section
  • Sorthat beds

Dwelling traces

Bornichnus[11]

  • B. tortuosus
  • Korsodde section

Tubular traces

  • Polychaetes

Chondrites[11]

  • C. isp.
  • Korsodde section

Tubular fodinichnia

Illustration of Chondrites bollensis

Cylindrichnus[11]

  • C. isp.
  • Korsodde section

Burrowing and track ichnofossils

  • Polychaetes

Diplocraterion[11]

  • D. parallelum
  • Levka section
  • Baga beds
  • Sorthat beds
  • Korsodde section

U-shaped burrows

Diplocraterion parallelum diagram

Palaeophycus[11]

  • P. isp.
  • Korsodde section

Cylindrical, predominantly horizontal to inclined burrows

  • Polychaetes
  • Semiaquatic insects (Orthoptera and Hemiptera)
  • Semiaquatic and non-aquatic beetles.
Palaeophycus fossil

Planolites[11]

  • P. isp.
  • Baga beds
  • Korsodde section

Cylindrical burrows

  • Polychaetes
Planolites fossil

Rosselia[11][62]

  • R. erecta
  • Korsodde section

Trace fossil

  • Shrimp
  • Other aquatic arthropods

Skolithos[11]

  • S. isp. A
  • S. isp. B
  • Korsodde section

Cylindrical to subcylindrical burrows

Skolithos ichnofosil reconstruction, with possible fauna associated

Teichichnus[11][63]

  • T. zigzag
  • T. isp.
  • Baga beds
  • Korsodde section

Dwelling traces

Teichichnus fossil

Thalassinoides[11]

  • T. isp.
  • Korsodde section

Tubular fodinichnia

Thalassinoides burrowing structures, with modern related fauna, showing the ecological convergence and the variety of animals that left this Ichnogenus.

See also

[edit]

References

[edit]
  1. ^ a b c d e f g h i j k Michelsen, O.; Nielsen, L. H.; Johannessen, P. N.; Andsbjerg, J.; Surlyk, F. (2003). "Jurassic lithostratigraphy and stratigraphic development onshore and offshore Denmark". Geological Survey of Denmark and Greenland (GEUS) Bulletin. 1 (1): 145–216. doi:10.34194/geusb.v1.4651. S2CID 126907584.
  2. ^ a b c d e Gry, H.; Jørgart, T.; Poulsen, V. (1969). "Lithostratigraphy and sedimentary evolution of the Triassic, Jurassic and Lower Cretaceous of Bornholm, Denmark". Mineralogisk Mus. 6 (1).
  3. ^ a b Gravesen, P. (1982). "Lithostratigraphy and sedimentary evolution of the Triassic, Jurassic and Lower Cretaceous of Bornholm, Denmark". Serie B / Danmarks geologiske undersøgelse. 1 (1).
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg Gry, Helge (1969). "Megaspores from the Jurassic of the island of Bornholm, Denmark" (PDF). Meddelelser Fra Dansk Geologisk Forening. 19 (1): 69–89. Archived (PDF) from the original on 26 September 2021. Retrieved 8 September 2021.
  5. ^ a b c Bergelin, I.; Obst, K.; Söderlund, U.; Larsson, K.; Johansson, L. (2011). "Mesozoic rift magmatism in the North Sea region: 40 Ar/39 Ar geochronology of Scanian basalts and geochemical constraints". International Journal of Earth Sciences. 100 (4): 787–804. Bibcode:2011IJEaS.100..787B. doi:10.1007/s00531-010-0516-3. S2CID 128811834. Archived from the original on 2021-09-08. Retrieved 2021-09-08.
  6. ^ a b c Nielsen., L. H. (1987). "Progress report 1.1.1988. Biostratigraphy and organic geochemistry of the Mesozoic on Bornholm". DGU 215 Confidential Report. Geological Survey of Denmark. 31: 0–35.
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg Koppelhus., E.B. (1988). "Catalogue of spores and pollen from the Lower–Middle Jurassic Bagå Formation on Bornholm, Denmark". DGU Confidential Report. Copenhagen: Geological 214 Survey of Denmark. 21: 42.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg Koppelhus, E.B.; Batten, D.J. (1992). "Megaspore assemblages from the Jurassic and lowermost Cretaceous of Bornholm, Denmark". Danmarks Geologiske Undersøgelse Serie A. 32: 81. doi:10.34194/seriea.v32.7052.
  9. ^ a b c Zimmermann, J.; Franz, M.; Schaller, A.; Wolfgramm, M. (2017). "The Toarcian-Bajocian deltaic system in the North German Basin: Subsurface mapping of ancient deltas-morphology, evolution and controls". Sedimentology. 65 (3): 897–930. doi:10.1111/sed.12410. S2CID 134553951. Archived from the original on 21 December 2021. Retrieved 8 September 2021.
  10. ^ Barth, G.; Pieńkowski, G.; Zimmermann, J.; Franz, M.; Kuhlmann, G. (2018). "Palaeogeographical evolution of the Lower Jurassic: high-resolution biostratigraphy and sequence stratigraphy in the Central European Basin". Geological Society, London, Special Publications. 469 (1): 341–369. Bibcode:2018GSLSP.469..341B. doi:10.1144/SP469.8. S2CID 134043668. Retrieved 8 September 2021.
  11. ^ a b c d e f g h i j k Bromley, R. G.; Uchman, A. (2003). "Trace fossils from the Lower and Middle Jurassic marginal marine deposits of the Sorthat Formation, Bornholm, Denmark". Bulletin of the Geological Society of Denmark. 52 (1): 185–208. doi:10.37570/bgsd-2003-50-15. Retrieved 8 September 2021.
  12. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf Hoelstad, T. (1985). "Palynology of the Uppermost Lower to Middle Jurassic strata on Bornholm, Denmark" (PDF). Geological Society of Denmark, Bulletin (Meddelelser Fra Dansk Geologisk Forening). 30 (1): 34. Archived (PDF) from the original on 26 September 2021. Retrieved 8 September 2021.
  13. ^ a b c Petersen, H. I.; Nielsen, L. H.; Koppelhus, E. B.; Sørensen, H. S. (2003). "Early and Middle Jurassic mires of Bornholm and the Fennoscandian Border Zone: a comparison of depositional environments and vegetation". Geological Survey of Denmark and Greenland (GEUS) Bulletin. 1: 631–656. doi:10.34194/geusb.v1.4687. Archived from the original on 9 April 2020. Retrieved 8 September 2021. This article incorporates text available under the CC BY 4.0 license.
  14. ^ a b c d e f Amoco (1989). "Stina-1, Final Well Report". Unpublished.
  15. ^ Nielsen, L.H.; Koppelhus, E.B. (1991). "Reworked Carboniferous palynomorphs from the Lower Jurassic of Bornholm and their palaeogeographic significance". Bulletin of the Geological Society of Denmark. 38 (1): 253–266. doi:10.37570/bgsd-1990-38-22. Retrieved 19 January 2022.
  16. ^ Graversen, O. (2004). "Upper Triassic–Lower Cretaceous seismic sequence stratigraphy and basin tectonics at Bornholm, Denmark, Tornquist Zone, NW Europe". Mar. Pet. Geol. 21 (1): 579–612. Bibcode:2004MarPG..21..579G. doi:10.1016/j.marpetgeo.2003.12.001. Retrieved 8 September 2021.
  17. ^ Zimmermann, J.; Franz, M.; Heunisch, C.; Luppold, F.W.; Mönnig, E.; Wolfgramm, M. (2015). "Sequence stratigraphic framework of the Lower and Middle Jurassic in the North German Basin: epicontinental sequences controlled by Boreal cycles". Palaeogeography, Palaeoclimatology, Palaeoecology. 440 (1): 395–416. Bibcode:2015PPP...440..395Z. doi:10.1016/j.palaeo.2015.08.045. Retrieved 8 September 2021.
  18. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Koppelhus, E. B.; Nielsen, L. H. (1994). "Palynostratigraphy and palaeoenvironments of the lower to middle jurassic bagå formation of bornholm, Denmark". Palynology. 18 (1): 139–194. Bibcode:1994Paly...18..139K. doi:10.1080/01916122.1994.9989443. Archived from the original on 8 September 2021. Retrieved 8 September 2021.
  19. ^ a b Nielsen, L.H. (1988). "Lithostratigraphy and depositional environment of the Lower and Middle Jurassic sequence drilled in shallow wells". Geological Survey of Denmark, Report No. 68 (1): 24–48.>
  20. ^ Graversen, O. (2004). "Upper Triassic-Cretaceous seismic stratigraphy and structural inversion offshore SW Bornholm, Tornquist Zone, Denmark" (PDF). Bulletin of the Geological Society of Denmark. 51 (1): 111–136. doi:10.37570/bgsd-2004-51-08. Archived (PDF) from the original on 24 February 2022. Retrieved 24 February 2022.
  21. ^ a b Wade-Murphy, J.; Kuerschner, W. M.; Hesselbo, S. P. (2006). "Early Toarcian vegetation history from the Korsodde Section of Bornholm (Denmark) and its possible impact on terrestrial carbon isotope records" (PDF). In 7th European Palaeobotany Palynology Conference: 153–154. Archived from the original (PDF) on 22 December 2021. Retrieved 13 October 2021.
  22. ^ a b c d e f Wade-Murphy, J.; Kuerschner, W. M.; Hesselbo, S. P. (2006). "Abrupt and gradual vegetation changes associated with Toarcian global change inferred from high resolution palynological study of the Korsodde section on Bornholm (DK)". Geophysical Research Abstracts. 8: 357.
  23. ^ a b c d e f g h i j k l Mehlqvist, K.; Vajda, V.; Larsson, L. M. (2009). "A Jurassic (Pliensbachian) flora from Bornholm, Denmark–a study of a historic plant-fossil collection at Lund University, Sweden". GFF. 131 (1–2): 137–146. Bibcode:2009GFF...131..137M. doi:10.1080/11035890902975275. S2CID 131021904.
  24. ^ a b c d e f g h i j k l m n o p q r s t u Bartholin, C.T. (1892). "Nogle i den bornholmske Juraformation forekommende Planteforsteninger". Botanisk Tidsskrift. 18 (1): 12–28.
  25. ^ a b c d e f g h i j k l m n o p q r s t u v Bartholin, C.T. (1894). "Nogle i den bornholmske Juraformation forekommende Planteforsteninger". Botanisk Tidsskrift. 19: 87–115.
  26. ^ a b c d e f g h i j k McElwain, J. C.; Wade-Murphy, J.; Hesselbo, S. P. (2005). "Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals". Nature. 435 (7041): 479–482. Bibcode:2005Natur.435..479M. doi:10.1038/nature03618. PMID 15917805. S2CID 4339259. Archived from the original on 8 September 2021. Retrieved 8 September 2021.
  27. ^ Hesselbo, S. P.; Gröcke, D. R.; Jenkyns, H. C.; Bjerrum, C. J.; Farrimond, P.; Bell, H. S. M.; Green, O. R. (2000). "Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event". Nature. 406 (1): 392–395. Bibcode:2000Natur.406..392H. doi:10.1038/35019044. PMID 10935632. S2CID 4426788. Archived from the original on 8 September 2021. Retrieved 8 September 2021.
  28. ^ a b c d e f g h i j k l m n o p Petersenn, H.I; Nielsen, L.H. (1995). "Controls on Peat accumulation and depositional environments of a Coal-bearing Coastal Plain succession of a Pull-Apart Basin; a petrographic, geochemical and sedimentological study, Lower Jurassic, Denmark". International Journal of Coal Geology. 27 (2–4): 99–129. Bibcode:1995IJCG...27...99P. doi:10.1016/0166-5162(94)00020-Z. Archived from the original on 8 September 2021. Retrieved 8 September 2021.
  29. ^ Dommain, R.; Couwenberg, J.; Joosten, H. (2011). "Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability". Quaternary Science Reviews. 30 (7–8): 999–1010. Bibcode:2011QSRv...30..999D. doi:10.1016/j.quascirev.2011.01.018. Retrieved 9 October 2021.
  30. ^ Petersen, H. I. (1993). "Petrographic facies analysis of Lower and Middle Jurassic coal seams on the island of Bornholm, Denmark". International Journal of Coal Geology. 22 (3–4): 189–216. Bibcode:1993IJCG...22..189P. doi:10.1016/0166-5162(93)90026-7.
  31. ^ Baker, S. J.; Hesselbo, S. P.; Lenton, T. M.; Duarte, L. V.; Belcher, C. M. (2017). "Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia". Nature Communications. 8 (1): 15018. Bibcode:2017NatCo...815018B. doi:10.1038/ncomms15018. PMC 5437290. PMID 28497785.
  32. ^ Baker, S.J. (2022). "Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth's past". Earth-Science Reviews. 224 (1): 180–212. Bibcode:2022ESRv..22403871B. doi:10.1016/j.earscirev.2021.103871. S2CID 244566725.
  33. ^ Seidenkrantz, M.S (1993). "Biostratigraphy and palaeoenvironmental analysis of a Lower to Middle Jurassic succession on Anholt, Denmark". Journal of Micropalaeontology. 12 (2): 201–218. Bibcode:1993JMicP..12..201S. doi:10.1144/jm.12.2.201. S2CID 55909679.
  34. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Hjort, A. (1899). "Om Vellengsbyleret og dets Flora". Danmarks Geologiske Undersøgelse. 10 (1): 61–86.
  35. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Möller, H. (1902). "Bidrag till Bornholms fossila flora: Pteridofyter". Malmströms boktryckeri. 38 (5). Retrieved 8 September 2021.
  36. ^ Schweitzer, H.J.; Van Konijnenburg Cittert, J.H.A.; van der Burgh, J. (1997). "The Rhaeto-Jurassic flora of Iran and Afghanistan Part 10:10. Bryophyta, Lycophyta, Sphenophyta, Pterophyta – Eusporangiatae and Protoleptosporangiatae". Palaeontographica. 243 (1): 103–192.
  37. ^ Van Konijnenburg-van Cittert, J. H.; Kustatscher, E.; Bauer, K.; Pott, C.; Schmeißner, S.; Dütsch, G.; Krings, M. (2014). "A Selaginellites from the Rhaetian of Wüstenwelsberg (Upper Franconia, Germany)". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 272 (2): 115–127. doi:10.1127/0077-7749/2014/0400. Retrieved 12 November 2021.
  38. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Möller ., H. (1903). "Bidrag till Bornholms fossila flora (Rhät och Lias)-Gymnospermer". Kungliga Svenska Vetenskapsakademiens Handlingar. 36 (6): 3–48. Archived from the original on 8 September 2021. Retrieved 8 September 2021.
  39. ^ Harris, T. M. (1935). The Fossil Flora of Scoresby Sound East Greenland. Meddelelser om Grønland. p. 112.
  40. ^ Li, Chunxiang; Miao, Xinyuan; Zhang, Li-Bing; Ma, Junye; Hao, Jiasheng (January 2020). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research. 105: 104136. Bibcode:2020CrRes.10504136L. doi:10.1016/j.cretres.2019.04.007. S2CID 146355798.
  41. ^ a b Harris, T. M. (1964). The Yorkshire Jurassic flora. II. Caytoniales, Cycadales & Pteridosperms (PDF). London: British Museum (Natural History). p. 91. Archived (PDF) from the original on 30 January 2022. Retrieved 30 January 2022.
  42. ^ Barbacka, M. (1994). "Komlopteris Barbacka, gen. nov., a segregate from Pachypteris Brongniart". Review of Palaeobotany and Palynology. 83 (4): 339–349. Bibcode:1994RPaPa..83..339B. doi:10.1016/0034-6667(94)90144-9. Archived from the original on 12 November 2021. Retrieved 12 November 2021.
  43. ^ Rydin, C.; Pedersen, K. R.; Crane, P. R.; Friis, E. M. (2006). "Former diversity of Ephedra (Gnetales): evidence from early Cretaceous seeds from Portugal and North America". Annals of Botany. 98 (1): 123–140. doi:10.1093/aob/mcl078. PMC 2803531. PMID 16675607. Archived from the original on 8 September 2021. Retrieved 8 September 2021.
  44. ^ Dobruskina, I.A. (1965). "New Jurassic cycads from the Upper Amur". International Geology Review. 7 (9): 1659–1669. Bibcode:1965IGRv....7.1659D. doi:10.1080/00206816509474219. Retrieved 28 January 2022.
  45. ^ Guy-Ohlson, D. (1988), "The use of dispersed palynomorphs referable to the form genus Chasmatosporites (Nilsson) Pocock and Jansonius, in Jurassic biostratigraphy" (PDF), Congreso Argentino de Paleontologia y Bioestratigrafia, 3 (1–2): 5–13, retrieved 9 April 2021
  46. ^ Batten, D. J.; Dutta, R. J. (1997). "Ultrastructure of exine of gymnospermous pollen grains from Jurassic and basal Cretaceous deposits in Northwest Europe and implications for botanical relationships". Review of Palaeobotany and Palynology. 99 (1): 25–54. Bibcode:1997RPaPa..99...25B. doi:10.1016/S0034-6667(97)00036-5. Retrieved 24 January 2022.
  47. ^ Seward, A. C. (1903). "On the occurrence of Dictyozamites in England, with remarks on European and eastern mesozoic floras" (PDF). Quarterly Journal of the Geological Society. 59 (1–4): 217–233. doi:10.1144/GSL.JGS.1903.059.01-04.20. S2CID 128424763.
  48. ^ Florin, R. (1933). "Über Nilssoniopteris glandulosa n. sp., eine Bennettitacee aus der Juraformation Bornholms". Arkiv för Botanik. 25 (20): 19.
  49. ^ a b Mathiesen, F. J. (1957). "Brachyoxylon rotnaensis n. sp. et fossilt ved fra Bornholms Lias" (PDF). Soertryk of Meddelelser Fra Dansk Geologisk Forening. 13 (1): 415–437. Archived (PDF) from the original on 2 February 2022. Retrieved 2 February 2022.
  50. ^ a b c d e f g h i j k l m Florin, R. (1958). "On Jurassic taxads and conifers from north-western Europe and eastern Greenland". Acta Horti Bergiani. 17: 402.
  51. ^ a b c Harris, T. M. (1979). The Yorkshire Jurassic Flora V Coniferales. Vol. 5. London: Trustees of the British Museum. p. 93. Archived from the original on 30 January 2022. Retrieved 30 January 2022.
  52. ^ Dong, C.; Shi, G.; Herrera, F.; Wang, Y.; Wang, Z.; Zhang, B.; Crane, P. R. (2021). "Leaves of Taxus with cuticle micromorphology from the Early Cretaceous of eastern Inner Mongolia, Northeast China". Review of Palaeobotany and Palynology. 298 (1): 105–121. Bibcode:2022RPaPa.29804588D. doi:10.1016/j.revpalbo.2021.104588. S2CID 245558315.
  53. ^ Hofmann, Christa-Ch.; Odgerel, Nyamsambuu; Seyfullah, Leyla J. (2021). "The occurrence of pollen of Sciadopityaceae Luerss. through time". Fossil Imprint. 77 (2): 271–281. doi:10.37520/fi.2021.019. S2CID 245555379. Archived from the original on 27 December 2021. Retrieved 27 December 2021.
  54. ^ a b c d Wade-Murphy, J.; Kuerschner, W. M (2006). "A new technique to infer the botanical affinity of palynomorphs, and its application on Spheripollenites psilatus from the Toarcian of Bornholm, Denmark" (PDF). In 7 Th European Palaeobotany Palynology Conference (1–2): 153–154. Archived from the original (PDF) on 22 December 2021. Retrieved 13 October 2021.
  55. ^ Doludenko, M.P. (1984). "Позднеюрские флоры Юго-Западной Евразии[Late Jurassic Floras of Southwestern Eurasia]" (PDF). Academy of Sciences of the USSR. pp. 3–112. Archived (PDF) from the original on 8 October 2021. Retrieved 8 October 2021.
  56. ^ Harris, T.M. (1979). The Yorkshire Jurassic flora V, Coniferales. London: British Museum (Natural History).
  57. ^ Alvin, K.L.; Barnard, P. D. W.; Harris, T.M.; Hughes, N. F.; Wagner, R. H.; Wesley, A. (1967). "Chapter 6 Gymnospermophyta". Geological Society, London, Special Publications. 2 (1): 247–268. Bibcode:1967GSLSP...2..247A. doi:10.1144/GSL.SP.1967.002.01.23. S2CID 128394239. Archived from the original on 15 February 2022. Retrieved 12 February 2022.
  58. ^ Doweld, A. B. (2001). "Schizolepidopsis, a new substitute generic name for Mesozoic plants" (PDF). Byulletenʹ Moskovskogo Obshchestva Ispytateleĭ Prirody. Otdel Geologicheskiĭ. 76 (1): 86–88. Archived (PDF) from the original on 17 February 2022. Retrieved 17 February 2022.
  59. ^ Yao, X.; Zhou, Z.; Zhang, B. (1998). "Reconstruction of the Jurassic conifer Sewardiodendron laxum (Taxodiaceae)". American Journal of Botany. 85 (9): 1289–1300. doi:10.2307/2446639. JSTOR 2446639. PMID 21685015. Archived from the original on 2021-09-08. Retrieved 2021-09-08.
  60. ^ Philippe, M.; Suteethorn, V.; Buffetaut, É. (2011). "Révision de Brachyoxylon rotnaense Mathiesen, description de B. serrae n. sp. et conséquences pour la stratigraphie du Crétacé inférieur d'Asie du Sud-Est" (PDF). Geodiversitas. 33 (1): 25–32. doi:10.5252/g2011n1a2. S2CID 129190239. Archived (PDF) from the original on 2 February 2022. Retrieved 2 February 2022.
  61. ^ a b c Langenheim, J. H. (1969). "A Botanical Inquiry: Amber provides an evolutionary framework for interdisciplinary studies of resin-secreting plants". Science. 163 (3872): 1157–1169. doi:10.1126/science.163.3872.1157. PMID 5765327. Archived from the original on 10 October 2021. Retrieved 10 October 2021.
  62. ^ Knaust, D. (2021). "Rosselichnidae ifam. nov.: burrows with concentric, spiral or eccentric lamination". Papers in Palaeontology. 7 (4): 1847–1875. Bibcode:2021PPal....7.1847K. doi:10.1002/spp2.1367. S2CID 236226280. Archived from the original on 24 January 2022. Retrieved 8 September 2021.
  63. ^ Knaust, D. (2018). "The ichnogenus Teichichnus Seilacher, 1955". Earth-Science Reviews. 177 (1): 386–403. Bibcode:2018ESRv..177..386K. doi:10.1016/j.earscirev.2017.11.023. Retrieved 8 September 2021.