Schwinger parametrization
Appearance
This article needs additional citations for verification. (July 2022) |
Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. It is named after Julian Schwinger,[1] who introduced the method in 1951 for quantum electrodynamics.[2]
Description
[edit]Using the observation that
one may simplify the integral:
for .
Alternative parametrization
[edit]Another version of Schwinger parametrization is:
which is convergent as long as and .[3] It is easy to generalize this identity to n denominators.
See also
[edit]References
[edit]- ^ Schwinger, Julian (1951-06-01). "On Gauge Invariance and Vacuum Polarization". Physical Review. 82 (5): 664–679. doi:10.1103/PhysRev.82.664.
- ^ Kim, U-Rae; Cho, Sungwoong; Lee, Jungil (2023-06-01). "The art of Schwinger and Feynman parametrizations". Journal of the Korean Physical Society. 82 (11): 1023–1039. doi:10.1007/s40042-023-00764-3. ISSN 1976-8524.
- ^ Schwartz, M. D. (2014). "33". Quantum Field Theory and the Standard Model (9 ed.). Cambridge University Press. p. 705. ISBN 9781107034730.