Jump to content

Schwinger parametrization

From Wikipedia, the free encyclopedia

Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. It is named after Julian Schwinger,[1] who introduced the method in 1951 for quantum electrodynamics.[2]

Description

[edit]

Using the observation that

one may simplify the integral:

for .

Alternative parametrization

[edit]

Another version of Schwinger parametrization is:

which is convergent as long as and .[3] It is easy to generalize this identity to n denominators.

See also

[edit]

References

[edit]
  1. ^ Schwinger, Julian (1951-06-01). "On Gauge Invariance and Vacuum Polarization". Physical Review. 82 (5): 664–679. doi:10.1103/PhysRev.82.664.
  2. ^ Kim, U-Rae; Cho, Sungwoong; Lee, Jungil (2023-06-01). "The art of Schwinger and Feynman parametrizations". Journal of the Korean Physical Society. 82 (11): 1023–1039. doi:10.1007/s40042-023-00764-3. ISSN 1976-8524.
  3. ^ Schwartz, M. D. (2014). "33". Quantum Field Theory and the Standard Model (9 ed.). Cambridge University Press. p. 705. ISBN 9781107034730.