Jump to content

Peter Pan disk

From Wikipedia, the free encyclopedia

A Peter Pan disk is a circumstellar disk around a star or brown dwarf that appears to have retained enough gas to form a gas giant planet for much longer than the typically assumed gas dispersal timescale of approximately 5 million years. Several examples of such disks have been observed to orbit stars with spectral types of M or later. The presence of gas around these disks has generally been inferred from the total amount of radiation emitted from the disk at infrared wavelengths, and/or spectroscopic signatures of hydrogen accreting onto the star. To fit one specific definition of a Peter Pan disk, the source needs to have an infrared "color" of , an age of >20 Myr and spectroscopic evidence of accretion.[1][2]

In 2016 volunteers of the Disk Detective project discovered WISE J080822.18-644357.3 (or J0808). This low-mass star showed signs of youth, for example a strong infrared excess and active accretion of gaseous material. It is part of the 45+11
−7
Myr old Carina young moving group, older than expected for these characteristics of an M-dwarf.[3][4] Other stars and brown dwarfs were discovered to be similar to J0808, with signs of youth while being in an older moving group.[4][2] Together with J0808, these older low-mass accretors in nearby moving groups have been called Peter Pan disks in one scientific paper published in early 2020.[5][2] Since then the term was used by other independent research groups.[6][7][8]

Name

[edit]

Peter Pan disks are named after the main character Peter Pan in the play and book Peter Pan; or, the Boy Who Wouldn't Grow Up, written by J.M. Barrie in 1904. The Peter Pan disks have a young appearance, while being old in years. In other words: The Peter Pan disks "refuse to grow up", a feature they share with the lost boys and titular character in Peter Pan.[2][1]

Characteristics

[edit]

The known Peter Pan disks have the H-alpha spectroscopic line as a sign of accretion. J0808 shows variations in the Paschen-β and Brackett-γ lines, which is a clear sign of accretion.[1][2] It was also identified as lithium-rich, which is a sign of youth.[4] Two peter pan disks (J0808 and J0632) show variation due to material from the disk blocking the light of the star.[1][9] J0808 and J0501 also showed flares.[1][2] Some of the Peter Pan disks (J0446, J0949, LDS 5606 and J1915) are binaries or suspected binaries.[2][10][11] J0226 is a candidate brown dwarf[2] and Delorme 1 (AB)b is a planetary-mass object in a circumbinary orbit.[7][12][13] A detailed study of J0446B with JWST MIRI detected 9 hydrocarbons, two nitrogen-bearing species, two isotopes of CO2, molecular hydrogen and two noble gases. Neon and molecular hydrogen strongly supports the idea that this disk is a long-lived primordial disk.[14]

It was suggested that Peter Pan disks take longer to dissipate due to lower photoevaporation caused by lower far-ultraviolet and X-ray emission coming from the M-dwarf.[2] Modelling has shown that disk can survive for 50 Myrs around stars with a mass less than 0.6 M and in low-radiation environments. At higher masses of 0.6 to 0.8 M the stars form an inner gap before 50 Myr, preventing accretion.[15] Observations with the Chandra X-ray Observatory showed that Peter Pan Disks have a similar X-ray luminosity as field M-dwarfs, with properties similar to weak-lined T Tauri stars. The researchers of this study concluded that the current X-ray luminosity of Peter Pan disk cannot explain their old age. The old age of the disk could be the result of weaker far-ultraviolet flux incident on the disk, due to weaker accretion in the pre-main sequence stage.[16] It was proposed that disks do form with a lifetime distribution, with some disks only existing for a few Myrs and others for dozens of Myrs. This would explain why some >20 Myr old M-dwarfs show accretion due to a disk, but not all M-dwarfs of this age. The research team found an initial disk fraction of 65% for M-dwarfs (M3.7-M6) and the disk lifetime distribution matches a Gaussian or Weibull distribution.[17]

Known Peter Pan disks

[edit]
Artist's Impression of a Peter Pan disk
SPHERE image of the disk around PDS 111, which is a higher-mass analogue of a Peter Pan disk

The prototype Peter Pan disk is WISE J080822.18-644357.3.[2] It was discovered by the NASA-led citizen science project Disk Detective.[18]

Murphy et al. found additional Peter Pan disks in the literature, which were identified as part of the Columba and Tucana-Horologium associations. The Disk Detective Collaboration identified two additional Peter Pan disks in Columba and Carina associations.[2] The paper also mentions that members of NGC 2547 were previously identified to have 22 μm excess and could be similar to Peter Pan disks.[2][19] 2MASS 08093547-4913033, which is one of the M-dwarfs with a debris disk in NGC 2547 was observed with the Spitzer Infrared Spectrograph. In this system the first detection of silicate was made from a debris disk around an M-type star. While the system shows the H-alpha line, it was interpreted to be devoid of gas and non-accreting.[20]

In the following years additional objects were discovered.[7][9][10][11] Some objects do not exactly fit the definition of Peter Pan disks, but are similar enough to be analogs: The object 2MASS J06195260-2903592 was found to be a 31+22
−10
Myr old analog to Peter Pan disks. This object does however not show accretion.[21] The star PDS 111 is interpreted as a higher-mass analog of Peter Pan disks, with an age of 15.9+1.7
−3.7
Myrs, a mass of 1.2±0.1 M, active accretion and a directly imaged disk.[22] One team also found old accreting stars in the Large Magellanic Cloud in the Tarantula Nebula.[23] This might be explained with a low metallicity in the LMC, which can lead to more massive disks that are less opaque.[15]

List of Peter Pan disk candidates

[edit]

Note: Wang et al. 2025[24] lists 14 Peter Pan disks, here only 4 are listed that are older than 20 Myrs. Not included is US 3566 (Gaia DR3 155649614856576), which is a binary of a white dwarf and M-dwarf,[25] which could be a cataclysmic variable. Not included are also 2MASS J04141188+2811535 and 2MASS J04091380+3136325, which could be Taurus members.[24][26]

Name Age (Myrs) Association spectral type infrared excess accretion Reference
WISE J080822.18-644357.3 45+11
−7
Carina association M5 yes yes [3][4]
2MASS J05010082-4337102 42+6
−4
Columba association M4.5 yes yes [2][27]
2MASS J02265658-5327032 45±4 Tucana-Horologium association L0δ yes yes [2][27]
WISEA J044634.16-262756.1 42+6
−4
Columba association (but might be χ1 Fornacis member, which is 34 Myr old) M6+M6 yes likely [2][28]
WISEA J094900.65-713803.1 45+11
−7
Carina association M4+M5 yes yes both [2]
2MASS J15460752-6258042 ~55 Argus association (but might be Beta Pictoris member) M5 yes yes [10][28]
2MASS J05082729−2101444 30–44 Columba association (but could be Beta Pictoris member) M5 yes yes [10]
LDS 5606 30–44 Columba association (but could be Beta Pictoris member) M5+M5 yes yes [29][10]
Delorme 1 (AB)b 30–45 Tucana-Horologium association L0 (very low gravity) no yes [7][12][13]
2MASS J06320799-6810419 ~45 Carina association M4.5 yes yes [9]
2MASS J19150079-2847587 24±3 Beta Pictoris moving group M4.8 (binary candidate) yes yes [11]
StHα34 24.7+0.9
−0.6
Beta Pictoris moving group M3+M3 yes yes [28][30][31]
Gaia DR3 2162887638405193216 >50 K9.4 yes yes [24]
CVSO 1241 (Gaia DR3 3223542525253775104) 25.1 Orion OB1? (would be 5–10 Myr)[32] M3.8 yes yes [24]
2MASS J05171175+0702232 (Gaia DR3 3241216624914091136) 24.7 Lambda Orionis ring?[33] M3.2 yes yes [24]
Gaia DR3 3319360599927089024 29.9 M3.6 yes yes [24]

2MASS J0041353-562112 was discarded as it belongs to the Beta Pictoris moving group and does not show excess.[2]

Implications for planet formation around M-stars

[edit]

There are different models to explain the existence of Peter Pan disks, such as disrupted planetesimals[4] or recent collisions of planetary bodies.[34] One explanation is that Peter Pan disks are long-lived primordial disks.[6] This would follow the trend of lower-mass stars requiring more time to dissipate their disks. Exoplanets around M-stars would have more time to form, significantly affecting the atmospheres on these planets.[1][2]

Peter Pan disks that form multiplanetary systems could force the planets in close-in, resonant orbits. The 7-planet system TRAPPIST-1 could be an end result of such a Peter Pan disk.[9]

A Peter Pan disk could also help to explain the existence of Jovian planets around M-dwarfs, such as TOI-5205b. A longer lifetime for a disk would give more time for a solid core to form, which could initiate runaway core-accretion.[35]

See also

[edit]

References

[edit]
  1. ^ a b c d e f silverbergastro (2020-01-17). "Our New Paper: "Peter Pan Disks"!". Disk Detective. Retrieved 2020-01-22.
  2. ^ a b c d e f g h i j k l m n o p q r Silverberg, Steven M.; Wisniewski, John P.; Kuchner, Marc J.; Lawson, Kellen D.; Bans, Alissa S.; Debes, John H.; Biggs, Joseph R.; Bosch, Milton K. D.; Doll, Katharina; Luca, Hugo A. Durantini; Enachioaie, Alexandru; Hamilton, Joshua; Holden, Jonathan; Hyogo, Michiharu; the Disk Detective Collaboration (2020-01-14). "Peter Pan Disks: Long-lived Accretion Disks Around Young M Stars". The Astrophysical Journal. 890 (2): 106. arXiv:2001.05030. Bibcode:2020ApJ...890..106S. doi:10.3847/1538-4357/ab68e6. S2CID 210718358.
  3. ^ a b Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagné, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R. (14 October 2016). "A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective". The Astrophysical Journal. 830 (2): L28. arXiv:1610.05293. Bibcode:2016ApJ...830L..28S. doi:10.3847/2041-8205/830/2/L28. ISSN 2041-8205. S2CID 119183849.
  4. ^ a b c d e Murphy, Simon J.; Mamajek, Eric E.; Bell, Cameron P. M. (2018-05-21). "WISE J080822.18−644357.3 – a 45 Myr-old accreting M dwarf hosting a primordial disc". Monthly Notices of the Royal Astronomical Society. 476 (3): 3290–3302. arXiv:1703.04544. Bibcode:2018MNRAS.476.3290M. doi:10.1093/mnras/sty471. ISSN 0035-8711. S2CID 119341475.
  5. ^ "Low-mass Stars | Steven M. Silverberg". www.nhn.ou.edu. Retrieved 2019-07-25.
  6. ^ a b Coleman, Gavin; Haworth, Thomas J. (June 2020). "Peter Pan discs: finding Neverland's parameters". Monthly Notices of the Royal Astronomical Society. 496 (1): 111. arXiv:2006.06115. Bibcode:2020MNRAS.496L.111C. doi:10.1093/mnrasl/slaa098. S2CID 219573224.
  7. ^ a b c d Eriksson, Simon C.; Asensio Torres, Rubén; Janson, Markus; Aoyama, Yuhiko; Marleau, Gabriel-Dominique; Bonnefoy, Mickael; Petrus, Simon (2020-06-01). "Strong Halpha emission and signs of accretion in a circumbinary planetary mass companion from MUSE". Astronomy and Astrophysics. 638: L6. arXiv:2005.11725. Bibcode:2020A&A...638L...6E. doi:10.1051/0004-6361/202038131. ISSN 0004-6361. S2CID 218870278.
  8. ^ Dai, Fei; Winn, Joshua N.; Schlaufman, Kevin; Wang, Songhu; Weiss, Lauren; Petigura, Erik A.; Howard, Andrew W.; Fang, Min (2020-06-01). "California-Kepler Survey. IX. Revisiting the Minimum-mass Extrasolar Nebula with Precise Stellar Parameters". The Astronomical Journal. 159 (6): 247. arXiv:2004.04847. Bibcode:2020AJ....159..247D. doi:10.3847/1538-3881/ab88b8. S2CID 215736954.
  9. ^ a b c d Gaidos, Eric; Mann, Andrew W.; Rojas-Ayala, Bárbara; Feiden, Gregory A.; Wood, Mackenna L.; Narayanan, Suchitra; Ansdell, Megan; Jacobs, Tom; LaCourse, Daryll (2022-07-01). "Planetesimals around stars with TESS (PAST) - II. An M dwarf 'dipper' star with a long-lived disc in the TESS continuous viewing zone". Monthly Notices of the Royal Astronomical Society. 514 (1): 1386–1402. arXiv:2204.14163. Bibcode:2022MNRAS.514.1386G. doi:10.1093/mnras/stac1433. ISSN 0035-8711.
  10. ^ a b c d e Lee, Jinhee; Song, Inseok; Murphy, Simon (2020-05-01). "2MASS J15460752-6258042: a mid-M dwarf hosting a prolonged accretion disc". Monthly Notices of the Royal Astronomical Society. 494 (1): 62–68. arXiv:2002.12600. Bibcode:2020MNRAS.494...62L. doi:10.1093/mnras/staa689. ISSN 0035-8711.
  11. ^ a b c Stahl, Asa G.; Johns-Krull, Christopher M.; Flagg, L. (2022-12-01). "Follow-up of Young Stars Identified with BANYAN Σ: New Low-mass Members of Nearby Moving Groups". The Astrophysical Journal. 941 (1): 101. Bibcode:2022ApJ...941..101S. doi:10.3847/1538-4357/ac8b78. ISSN 0004-637X.
  12. ^ a b Betti, S. K.; Follette, K. B.; Ward-Duong, K.; Aoyama, Y.; Marleau, G. -D.; Bary, J.; Robinson, C.; Janson, M.; Balmer, W.; Chauvin, G.; Palma-Bifani, P. (2022-08-01). "Near-infrared Accretion Signatures from the Circumbinary Planetary-mass Companion Delorme 1 (AB)b". The Astrophysical Journal. 935 (1): L18. arXiv:2208.05016. Bibcode:2022ApJ...935L..18B. doi:10.3847/2041-8213/ac85ef. ISSN 0004-637X.
  13. ^ a b Ringqvist, Simon C.; Viswanath, Gayathri; Aoyama, Yuhiko; Janson, Markus; Marleau, Gabriel-Dominique; Brandeker, Alexis (2023-01-01). "Resolved near-UV hydrogen emission lines at 40-Myr super-Jovian protoplanet Delorme 1 (AB)b. Indications of magnetospheric accretion". Astronomy and Astrophysics. 669: L12. arXiv:2212.03207. Bibcode:2023A&A...669L..12R. doi:10.1051/0004-6361/202245424. ISSN 0004-6361.
  14. ^ Long, Feng; Pascucci, Ilaria; Houge, Adrien; Banzatti, Andrea; Pontoppidan, Klaus M.; Najita, Joan; Krijt, Sebastiaan; Xie, Chengyan; Williams, Joe (2025). "The First JWST View of a 30-Myr-old Protoplanetary Disk Reveals a Late-stage Carbon-rich Phase". The Astrophysical Journal. 978 (2): L30. arXiv:2412.05535. Bibcode:2025ApJ...978L..30L. doi:10.3847/2041-8213/ad99d2.
  15. ^ a b Wilhelm, Martijn J. C.; Portegies Zwart, Simon (2022-01-01). "Exploring the possibility of Peter Pan discs across stellar mass". Monthly Notices of the Royal Astronomical Society. 509 (1): 44–51. arXiv:2109.01456. Bibcode:2022MNRAS.509...44W. doi:10.1093/mnras/stab2523. ISSN 0035-8711.
  16. ^ Laos, Stefan; Wisniewski, John P.; Kuchner, Marc J.; Silverberg, Steven M.; Günther, Hans Moritz; Principe, David A.; Bonine, Brett; Kounkel, Marina; The Disk Detective Collaboration (2022-08-01). "Chandra Observations of Six Peter Pan Disks: Diversity of X-Ray-driven Internal Photoevaporation Rates Does Not Explain Their Rare Longevity". The Astrophysical Journal. 935 (2): 111. arXiv:2207.07140. Bibcode:2022ApJ...935..111L. doi:10.3847/1538-4357/ac8156. ISSN 0004-637X.
  17. ^ Pfalzner, Susanne; Dincer, Furkan (2024-03-01). "Low-mass Stars: Their Protoplanetary Disk Lifetime Distribution". The Astrophysical Journal. 963 (2): 122. arXiv:2401.03775. Bibcode:2024ApJ...963..122P. doi:10.3847/1538-4357/ad1bef. ISSN 0004-637X.
  18. ^ Ramsey, Sarah (2016-10-21). "Citizen Scientists Discover Potential New Exoplanet Hunting Ground". NASA. Retrieved 2020-01-22.
  19. ^ Forbrich, Jan; Lada, Charles J.; Muench, August A.; Teixeira, Paula S. (November 2008). "New M Dwarf Debris Disk Candidates in NGC 2547". The Astrophysical Journal. 687 (2): 1107. arXiv:0807.3597. Bibcode:2008ApJ...687.1107F. doi:10.1086/592035. ISSN 0004-637X. S2CID 119215678.
  20. ^ Teixeira, Paula S.; Lada, Charles J.; Wood, Kenneth; Robitaille, Thomas P.; Luhman, Kevin L. (July 2009). "Infrared Spectrograph Characterization of a Debris Disk Around an M-Type Star in NGC 2547". The Astrophysical Journal. 700 (1): 454–459. arXiv:0905.2469. Bibcode:2009ApJ...700..454T. doi:10.1088/0004-637X/700/1/454. ISSN 0004-637X. S2CID 8231130.
  21. ^ Liu, Michael C.; Magnier, Eugene A.; Zhang, Zhoujian; Gaidos, Eric; Dupuy, Trent J.; Liu, Pengyu; Biller, Beth A.; Vos, Johanna M.; Allers, Katelyn N.; Hinkle, Jason T.; Shappee, Benjamin J.; Constantinou, Sage N. L.; Dennis, Mitchell T.; Emerson, Kenji S. (2022-10-01). "On the Unusual Variability of 2MASS J06195260-2903592: A Long-lived Disk around a Young Ultracool Dwarf". The Astronomical Journal. 164 (4): 165. arXiv:2208.14551. Bibcode:2022AJ....164..165L. doi:10.3847/1538-3881/ac8cee. ISSN 0004-6256.
  22. ^ Derkink, Annelotte; Ginski, Christian; Pinilla, Paola; Kurtovic, Nicolas; Kaper, Lex; de Koter, Alex; Valegård, Per-Gunnar; Mamajek, Eric; Backs, Frank; Benisty, Myriam; Birnstiel, Til; Columba, Gabriele; Dominik, Carsten; Garufi, Antonio; Hogerheijde, Michiel (2024-08-01). "Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): PDS 111, an old T Tauri star with a young-looking disk". Astronomy and Astrophysics. 688: A149. arXiv:2406.04160. Bibcode:2024A&A...688A.149D. doi:10.1051/0004-6361/202348555. ISSN 0004-6361.
  23. ^ De Marchi, Guido; Panagia, Nino; Beccari, Giacomo (2017-09-01). "Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula". The Astrophysical Journal. 846 (2): 110. arXiv:1708.03631. Bibcode:2017ApJ...846..110D. doi:10.3847/1538-4357/aa85e9. ISSN 0004-637X.
  24. ^ a b c d e f Wang, Xiao-Long; Fang, Min; Liu, Yao; Zhang, Miao-Miao; Cui, Wen-Yuan (March 2025). "LAMOST Reveals Long-lived Protoplanetary Disks". The Astronomical Journal. 169 (3): 141. arXiv:2501.04295. Bibcode:2025AJ....169..141W. doi:10.3847/1538-3881/ada8a7. ISSN 0004-6256.
  25. ^ "US 3566". simbad.cds.unistra.fr. Retrieved 2025-05-15.
  26. ^ Rebull, L. M.; Koenig, X. P.; Padgett, D. L.; Terebey, S.; McGehee, P. M.; Hillenbrand, L. A.; Knapp, G. R.; Leisawitz, D.; Liu, W.; Noriega-Crespo, A.; Ressler, M. E.; Stapelfeldt, K. R.; Fajardo-Acosta, S.; Mainzer, A. (September 2011). "New Young Star Candidates in the Taurus-Auriga Region as Selected from the Wide-Field Infrared Survey Explorer". The Astrophysical Journal Supplement Series. 196 (1): 4. arXiv:1106.5080. Bibcode:2011ApJS..196....4R. doi:10.1088/0067-0049/196/1/4. ISSN 0067-0049.
  27. ^ a b Boucher, Anne; Lafrenière, David; Gagné, Jonathan; Malo, Lison; Faherty, Jacqueline K.; Doyon, René; Chen, Christine H. (15 November 2016). "Banyan. Viii. New Low-Mass Stars and Brown Dwarfs with Candidate Circumstellar Disks". The Astrophysical Journal. 832 (1): 50. arXiv:1608.08259. Bibcode:2016ApJ...832...50B. doi:10.3847/0004-637X/832/1/50. ISSN 0004-637X. S2CID 119017727.
  28. ^ a b c Luhman, K. L. (2024-10-01). "A Census of the β Pic Moving Group and Other Nearby Associations with Gaia". The Astronomical Journal. 168 (4): 159. arXiv:2409.06092. Bibcode:2024AJ....168..159L. doi:10.3847/1538-3881/ad697d. ISSN 0004-6256.
  29. ^ Rodriguez, David R.; Zuckerman, Ben; Faherty, Jacqueline K.; Vican, Laura (2014-07-01). "A dusty M5 binary in the β Pictoris moving group". Astronomy and Astrophysics. 567: A20. arXiv:1404.2543. Bibcode:2014A&A...567A..20R. doi:10.1051/0004-6361/201423604. ISSN 0004-6361.
  30. ^ White, Russel J.; Hillenbrand, Lynne A. (2005-03-01). "A Long-lived Accretion Disk around a Lithium-depleted Binary T Tauri Star". The Astrophysical Journal. 621 (1): L65 – L68. arXiv:astro-ph/0501307. Bibcode:2005ApJ...621L..65W. doi:10.1086/428752. ISSN 0004-637X.
  31. ^ Hartmann, Lee; Calvet, Nuria; Watson, Dan M.; D'Alessio, P.; Furlan, E.; Sargent, B.; Forrest, W. J.; Uchida, K. I.; Green, J. D.; Sloan, G. C.; Chen, C. H.; Najita, J.; Kemper, F.; Herter, T. L.; Morris, P. (2005-08-01). "The Accretion Disk of the Lithium-depleted Young Binary St 34". The Astrophysical Journal. 628 (2): L147 – L150. Bibcode:2005ApJ...628L.147H. doi:10.1086/432756. ISSN 0004-637X.
  32. ^ Karim, Tanveer; Stassun, Keivan G.; Briceño, César; Vivas, A. Katherina; Raetz, Stefanie; Mateu, Cecilia; Downes, Juan José; Calvet, Nuria; Hernández, Jesús; Neuhäuser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; Cruz-Dias, Gustavo A. (December 2016). "The Rotation Period Distributions of 4-10 Myr T Tauri Stars in Orion OB1: New Constraints on Pre-main-sequence Angular Momentum Evolution". The Astronomical Journal. 152 (6): 198. arXiv:1605.04333. Bibcode:2016AJ....152..198K. doi:10.3847/0004-6256/152/6/198. ISSN 0004-6256.
  33. ^ Cao, Lyra; Pinsonneault, Marc H.; Hillenbrand, Lynne A.; Kuhn, Michael A. (January 2022). "Age Spreads and Systematics in λ Orionis with Gaia DR2 and the SPOTS Tracks". The Astrophysical Journal. 924 (2): 84. arXiv:2110.11363. Bibcode:2022ApJ...924...84C. doi:10.3847/1538-4357/ac307f. ISSN 0004-637X.
  34. ^ Flaherty, Kevin M.; Hughes, A. Meredith; Mamajek, Eric E.; Murphy, Simon J. (2019-02-13). "The Planet Formation Potential Around a 45 Myr old Accreting M Dwarf". The Astrophysical Journal. 872 (1): 92. arXiv:1812.04124. Bibcode:2019ApJ...872...92F. doi:10.3847/1538-4357/aaf794. ISSN 1538-4357. S2CID 119251811.
  35. ^ Kanodia, Shubham; Mahadevan, Suvrath; Libby-Roberts, Jessica; Stefansson, Gudmundur; Cañas, Caleb I.; Piette, Anjali A. A.; Boss, Alan; Teske, Johanna; Chambers, John; Zeimann, Greg; Monson, Andrew; Robertson, Paul; Ninan, Joe P.; Lin, Andrea S. J.; Bender, Chad F. (2023-03-01). "TOI-5205b: A Short-period Jovian Planet Transiting a Mid-M Dwarf". The Astronomical Journal. 165 (3): 120. arXiv:2209.11160. Bibcode:2023AJ....165..120K. doi:10.3847/1538-3881/acabce. hdl:20.500.11850/601567. ISSN 0004-6256.
[edit]