Kaluza–Klein–Riemann curvature tensor
In Kaluza–Klein theory, a unification of general relativity and electromagnetism, the five-fimensional Kaluza–Klein–Riemann curvature tensor (or Kaluza–Klein–Riemann–Christoffel curvature tensor) is the generalization of the four-dimensional Riemann curvature tensor (or Riemann–Christoffel curvature tensor). Its contraction with itself is the Kaluza–Klein–Ricci tensor, a generalization of the Ricci tensor. Its contraction with the Kaluza–Klein metric is the Kaluza–Klein–Ricci scalar, a generalization of the Ricci scalar.
The Kaluza–Klein–Riemann curvature tensor, Kaluza–Klein–Ricci tensor and scalar are namend after Theodor Kaluza, Oskar Klein, Bernhard Riemann and Gregorio Ricci-Curbastro.
Definition
[edit]Let be the Kaluza–Klein metric and be the Kaluza–Klein–Christoffel symbols. The Kaluza–Klein–Riemann curvature tensor is given by:
The Kaluza–Klein–Ricci tensor and scalar are given by:[1]
Literature
[edit]- Overduin, J. M.; Wesson, P. S. (1997). "Kaluza–Klein Gravity". Physics Reports. 283 (5): 303–378. arXiv:gr-qc/9805018. Bibcode:1997PhR...283..303O. doi:10.1016/S0370-1573(96)00046-4. S2CID 119087814.
References
[edit]- ^ Overduin & Wesson 1997, Equation (4)