Construction for categories
In higher category theory in mathematics , the join of simplicial sets is an operation making the category of simplicial sets into a monoidal category . In particular, it takes two simplicial sets to construct another simplicial set. It is closely related to the diamond operation and used in the construction of the twisted diagonal . Under the nerve construction, it corresponds to the join of categories and under the geometric realization , it corresponds to the join of topological spaces .
Visualization of the join
X
∗
Y
{\displaystyle X*Y}
with the blue part representing
X
{\displaystyle X}
and the green part representing
Y
{\displaystyle Y}
.
For natural numbers
m
,
p
,
q
∈
N
{\displaystyle m,p,q\in \mathbb {N} }
, one has the identity:[ 1]
Hom
(
[
m
]
,
[
p
+
q
+
1
]
)
=
∏
i
+
j
+
1
=
n
Hom
(
[
i
]
,
[
p
]
)
×
Hom
(
[
j
]
,
[
q
]
)
,
{\displaystyle \operatorname {Hom} ([m],[p+q+1])=\prod _{i+j+1=n}\operatorname {Hom} ([i],[p])\times \operatorname {Hom} ([j],[q]),}
which can be extended by colimits to a functor a functor
−
∗
−
:
s
S
e
t
×
s
S
e
t
→
s
S
e
t
{\displaystyle -*-\colon \mathbf {sSet} \times \mathbf {sSet} \rightarrow \mathbf {sSet} }
, which together with the empty simplicial set as unit element makes the category of simplicial sets
s
S
e
t
{\displaystyle \mathbf {sSet} }
into a monoidal category . For simplicial set
X
{\displaystyle X}
and
Y
{\displaystyle Y}
, their join
X
∗
Y
{\displaystyle X*Y}
is the simplicial set:[ 2] [ 3] [ 1]
(
X
∗
Y
)
n
=
∏
i
+
j
+
1
=
n
X
i
×
Y
j
.
{\displaystyle (X*Y)_{n}=\prod _{i+j+1=n}X_{i}\times Y_{j}.}
A
n
{\displaystyle n}
-simplex
σ
:
Δ
n
→
X
∗
Y
{\displaystyle \sigma \colon \Delta ^{n}\rightarrow X*Y}
therefore either factors over
X
{\displaystyle X}
or
Y
{\displaystyle Y}
or splits into a
p
{\displaystyle p}
-simplex
σ
−
:
Δ
p
→
X
{\displaystyle \sigma _{-}\colon \Delta ^{p}\rightarrow X}
and a
q
{\displaystyle q}
-simplex
σ
+
:
Δ
q
→
Y
{\displaystyle \sigma _{+}\colon \Delta ^{q}\rightarrow Y}
with
n
=
p
+
q
+
1
{\displaystyle n=p+q+1}
and
σ
=
σ
−
∗
σ
+
{\displaystyle \sigma =\sigma _{-}*\sigma _{+}}
.[ 4]
One has canonical morphisms
X
,
Y
→
X
∗
Y
{\displaystyle X,Y\rightarrow X*Y}
, which combine into a canonical morphism
X
+
Y
→
X
∗
Y
{\displaystyle X+Y\rightarrow X*Y}
through the universal property of the coproduct . One also has a canonical morphism
X
∗
Y
→
Δ
0
∗
Δ
0
≅
Δ
1
{\displaystyle X*Y\rightarrow \Delta ^{0}*\Delta ^{0}\cong \Delta ^{1}}
of terminal maps, for which the fiber of
0
{\displaystyle 0}
is
X
{\displaystyle X}
and the fiber of
1
{\displaystyle 1}
is
Y
{\displaystyle Y}
.
For a simplicial set
X
{\displaystyle X}
, one further defines its left cone and right cone as:
X
◃
:=
Δ
0
∗
X
,
{\displaystyle X^{\triangleleft }:=\Delta ^{0}*X,}
X
▹
:=
X
∗
Δ
0
.
{\displaystyle X^{\triangleright }:=X*\Delta ^{0}.}
Let
Y
{\displaystyle Y}
be a simplicial set. The functor
Y
∗
−
:
s
S
e
t
→
Y
∖
s
S
e
t
,
X
↦
(
Y
↦
Y
∗
X
)
{\displaystyle Y*-\colon \mathbf {sSet} \rightarrow Y\backslash \mathbf {sSet} ,X\mapsto (Y\mapsto Y*X)}
has a right adjoint
Y
∖
s
S
e
t
→
s
S
e
t
,
(
t
:
Y
→
W
)
↦
t
∖
W
{\displaystyle Y\backslash \mathbf {sSet} \rightarrow \mathbf {sSet} ,(t\colon Y\rightarrow W)\mapsto t\backslash W}
(alternatively denoted
Y
∖
W
{\displaystyle Y\backslash W}
) and the functor
−
∗
Y
:
s
S
e
t
→
Y
∖
s
S
e
t
,
X
↦
(
Y
↦
X
∗
Y
)
{\displaystyle -*Y\colon \mathbf {sSet} \rightarrow Y\backslash \mathbf {sSet} ,X\mapsto (Y\mapsto X*Y)}
also has a right adjoint
Y
∖
s
S
e
t
→
s
S
e
t
,
(
t
:
Y
→
W
)
↦
W
/
t
{\displaystyle Y\backslash \mathbf {sSet} \rightarrow \mathbf {sSet} ,(t\colon Y\rightarrow W)\mapsto W/t}
(alternatively denoted
W
/
Y
{\displaystyle W/Y}
).[ 5] [ 6] [ 7] A special case is
Y
=
Δ
0
{\displaystyle Y=\Delta ^{0}}
the terminal simplicial set, since
s
S
e
t
∗
=
Δ
0
∖
s
S
e
t
{\displaystyle \mathbf {sSet} _{*}=\Delta ^{0}\backslash \mathbf {sSet} }
is the category of pointed simplicial sets.
Let
C
{\displaystyle {\mathcal {C}}}
be a category and
X
∈
Ob
C
{\displaystyle X\in \operatorname {Ob} {\mathcal {C}}}
be an object. Let
[
0
]
{\displaystyle [0]}
be the terminal category (with the notation taken from the terminal object of the simplex category ), then there is an associated functor
t
:
[
0
]
→
C
,
0
↦
X
{\displaystyle t\colon [0]\rightarrow {\mathcal {C}},0\mapsto X}
, which with the nerve induces a morphism
N
t
:
Δ
0
→
N
C
{\displaystyle Nt\colon \Delta ^{0}\rightarrow N{\mathcal {C}}}
. For every simplicial set
A
{\displaystyle A}
, one has by additionally using the adjunction between the join of categories and slice categories:[ 8]
s
S
e
t
(
A
,
N
C
/
N
t
)
≅
s
S
e
t
∗
(
Δ
0
→
A
∗
Δ
0
,
N
t
)
≅
C
a
t
∗
(
[
0
]
→
τ
(
A
)
⋆
[
0
]
,
t
)
≅
C
a
t
(
τ
(
A
)
,
C
/
X
)
≅
s
S
e
t
(
A
,
N
(
C
/
X
)
)
.
{\displaystyle {\begin{aligned}\mathbf {sSet} (A,N{\mathcal {C}}/Nt)&\cong \mathbf {sSet} _{*}(\Delta ^{0}\rightarrow A*\Delta ^{0},Nt)\cong \mathbf {Cat} _{*}([0]\rightarrow \tau (A)\star [0],t)\\&\cong \mathbf {Cat} (\tau (A),{\mathcal {C}}/X)\cong \mathbf {sSet} (A,N({\mathcal {C}}/X)).\end{aligned}}}
Hence according to the Yoneda lemma , one has (with the alternative notation, which here better underlines the result):[ 9] [ 7]
N
C
/
N
X
≅
N
(
C
/
X
)
.
{\displaystyle N{\mathcal {C}}/NX\cong N({\mathcal {C}}/X).}
One has:[ 10]
∂
Δ
m
∗
Δ
n
∪
Δ
m
∗
∂
Δ
n
≅
∂
Δ
m
+
n
+
1
,
{\displaystyle \partial \Delta ^{m}*\Delta ^{n}\cup \Delta ^{m}*\partial \Delta ^{n}\cong \partial \Delta ^{m+n+1},}
Λ
k
m
∗
Δ
n
∪
Δ
m
∗
∂
Δ
n
≅
Λ
k
m
+
n
+
1
,
{\displaystyle \Lambda _{k}^{m}*\Delta ^{n}\cup \Delta ^{m}*\partial \Delta ^{n}\cong \Lambda _{k}^{m+n+1},}
∂
Δ
m
∗
Δ
n
∪
Δ
m
∗
Λ
k
n
≅
Λ
m
+
k
+
1
m
+
n
+
1
.
{\displaystyle \partial \Delta ^{m}*\Delta ^{n}\cup \Delta ^{m}*\Lambda _{k}^{n}\cong \Lambda _{m+k+1}^{m+n+1}.}
For simplicial sets
X
{\displaystyle X}
and
Y
{\displaystyle Y}
, there is a unique morphism
γ
X
,
Y
:
X
⋄
Y
→
X
∗
Y
{\displaystyle \gamma _{X,Y}\colon X\diamond Y\rightarrow X*Y}
into the diamond operation compatible with the maps
X
+
Y
→
X
∗
Y
,
X
⋄
Y
{\displaystyle X+Y\rightarrow X*Y,X\diamond Y}
and
X
∗
Y
,
X
⋄
Y
→
Δ
1
{\displaystyle X*Y,X\diamond Y\rightarrow \Delta ^{1}}
.[ 11] It is a weak categorical equivalence, hence a weak equivalence of the Joyal model structure .[ 12] [ 13]
For a simplicial set
X
{\displaystyle X}
, the functors
X
∗
−
,
−
∗
X
:
s
S
e
t
→
s
S
e
t
{\displaystyle X*-,-*X\colon \mathbf {sSet} \rightarrow \mathbf {sSet} }
preserve weak categorical equivalences.[ 14]
For ∞-categories
X
{\displaystyle X}
and
Y
{\displaystyle Y}
, the simplicial set
X
∗
Y
{\displaystyle X*Y}
is also an ∞-category.[ 15] [ 16]
The join is associative. For simplicial sets
X
{\displaystyle X}
,
Y
{\displaystyle Y}
and
Z
{\displaystyle Z}
, one has:
(
X
∗
Y
)
∗
Z
≅
X
∗
(
Y
∗
Z
)
.
{\displaystyle (X*Y)*Z\cong X*(Y*Z).}
The join reverses under the opposite simplicial set . For simplicial sets
X
{\displaystyle X}
and
Y
{\displaystyle Y}
, one has:[ 17] [ 18]
(
X
∗
Y
)
o
p
≅
Y
o
p
∗
X
o
p
.
{\displaystyle (X*Y)^{\mathrm {op} }\cong Y^{\mathrm {op} }*X^{\mathrm {op} }.}
For a morphism
t
:
Y
→
W
{\displaystyle t\colon Y\rightarrow W}
, one has (as adjoint of the previous result):[ 18]
(
W
/
t
)
o
p
≅
t
o
p
∖
W
o
p
.
{\displaystyle (W/t)^{\mathrm {op} }\cong t^{\mathrm {op} }\backslash W^{\mathrm {op} }.}
For morphisms
z
:
Y
∗
X
→
W
{\displaystyle z\colon Y*X\rightarrow W}
, its precomposition with the canonical inclusion
x
:
X
→
Y
∗
X
→
W
{\displaystyle x\colon X\rightarrow Y*X\rightarrow W}
and
y
:
Y
→
W
/
x
{\displaystyle y\colon Y\rightarrow W/x}
, one has
W
/
z
≅
(
W
/
x
)
/
y
{\displaystyle W/z\cong (W/x)/y}
or in alternative notation:[ 18]
W
/
(
Y
∗
X
)
≅
(
W
/
X
)
/
Y
.
{\displaystyle W/(Y*X)\cong (W/X)/Y.}
For every simplicial set
A
{\displaystyle A}
, one has:
s
S
e
t
(
A
,
W
/
z
)
≅
(
Y
∗
X
)
∖
s
S
e
t
(
(
Y
∗
X
)
→
A
∗
(
Y
∗
X
)
,
z
)
≅
X
∖
s
S
e
t
(
X
→
(
A
∗
Y
)
∗
X
,
x
)
≅
s
S
e
t
(
A
∗
Y
,
W
/
x
)
≅
Y
∖
s
S
e
t
(
Y
→
A
∗
Y
,
y
)
≅
s
S
e
t
(
A
,
(
W
/
x
)
/
y
)
,
{\displaystyle {\begin{aligned}\mathbf {sSet} (A,W/z)&\cong (Y*X)\backslash \mathbf {sSet} ((Y*X)\rightarrow A*(Y*X),z)\cong X\backslash \mathbf {sSet} (X\rightarrow (A*Y)*X,x)\\&\cong \mathbf {sSet} (A*Y,W/x)\cong Y\backslash \mathbf {sSet} (Y\rightarrow A*Y,y)\cong \mathbf {sSet} (A,(W/x)/y),\end{aligned}}}
so the claim follows from the Yoneda lemma.
Under the nerve , the join of categories becomes the join of simplicial sets. For small categories
C
{\displaystyle {\mathcal {C}}}
and
D
{\displaystyle {\mathcal {D}}}
, one has:[ 19] [ 20]
N
(
C
⋆
D
)
≅
N
C
∗
N
D
.
{\displaystyle N({\mathcal {C}}\star {\mathcal {D}})\cong N{\mathcal {C}}*N{\mathcal {D}}.}
^ a b Cisinski 2019, 3.4.12.
^ Joyal 2008, Proposition 3.1.
^ Lurie 2009, Definition 1.2.8.1.
^ Kerodon, Remark 4.3.3.17.
^ Joyal 2008, Proposition 3.12.
^ Lurie 2009, Proposition 1.2.9.2
^ a b Cisinski 2019, 3.4.14.
^ Lurie 2009, 1.2.9 Overcategories and Undercategories
^ Joyal 2008, Proposition 3.13.
^ Cisinski 2019, Proposition 3.4.17.
^ Cisinski 2019, Proposition 4.2.2.
^ Lurie 2009, Proposition 4.2.1.2.
^ Cisinksi 2019, Proposition 4.2.3.
^ Cisinski 2019, Corollary 4.2.5.
^ Joyal 2008, Corollary 3.23.
^ Lurie 2009, Proposition 1.2.8.3
^ Joyal 2008, p. 244
^ a b c Cisinski 2019, Remark 3.4.15.
^ Joyal 2008, Corollary 3.3.
^ Kerodon, Example 4.3.3.14.