Jump to content

Flying Saucer (protoplanetary disk)

From Wikipedia, the free encyclopedia
Flying Saucer

JWST image of the Flying Saucer disk
Observation data
Epoch J2000      Equinox J2000
Constellation Ophiuchus
Right ascension 16h 28m 13.697s
Declination −24° 31′ 39.846″
Characteristics
Evolutionary stage young stellar object
Spectral type M1[1]
Astrometry
Distance390 ly
(120 pc)[2]
Details
Mass0.58 ±0.01[3] M
Temperature3500[4] K
Other designations
BKLT J162813-243139, 2MASS J16281370-2431391, EPIC 203891877, TIC 175744769, WISE J162813.70-243139.1, SSTc2d J162813.7-243139, USNO-B1.0 0654-00363984, Gaia DR3 6049103961995537664
Database references
SIMBADdata

The Flying Saucer (2MASS J16281370-2431391) is a protoplanetary disk in the Rho Ophiuchi cloud complex.[5][3]

Discovery and name

[edit]

The 2MASS source J16281370-2431391 was identified as resolved circumstellar disk with the New Technology Telescope in 2003. Follow-up observations with the Very Large Telescope (instrument: ISAAC) did show that the object had a dust lane in the middle and two reflection nebulae with different colors. The first author, Nicolas Grosso, recalled their first impression of the VLT follow-up image: "That is when we looked at each other and, with one voice, immediately decided to nickname it the Flying Saucer!"[5][6] The name likely comes from the same-named UFO type called Flying Saucer.

Central star

[edit]

The star is hidden behind dust and not much is know about it. ALMA observations did measure the rotation of the gas inside the disk and researchers used this measurement to determine the mass of the star, which is 58% the mass of the sun.[7][3]

Disk properties

[edit]

The disk has a radius of 2.15 arcseconds. The Rho Ophiuchi Complex is about 140 parsec distant. The researchers used this distance to measure a disk radius of 300 astronomical units (AU). The inclination of the disk was measured to be 86°±. This work also found that the two nebulae have different colors.[5] Observations with the Spitzer spectrograph showed large dust grains with a size of 5-10 μm beyond 50 AU.[4] The CO absorption detected with ALMA was used to measure a temperature of 5-7 Kelvin (K) for large dust grains at a distance of 100 AU from the star. The researchers find that the disk could have a large reservoir of mass needed for planet formation.[8][9] This low temperature is in disagreement with observations of other disks, such as DM Tauri, which has a dust temperature of 20 K at 100 AU. One team suspects that the measured disk temperature is a mix of low temperature large grains and higher temperature small grains. The previous ALMA study did determine only the large grain temperature of the Flying Saucer.[10]

Chemical composition

[edit]

Observations with Spitzer tentatively detected emission due to molecular hydrogen and Polycyclic aromatic hydrocarbons (PAHs).[4] Observations with AKARI detected water ice bands in this disk.[11] The IRAM 30 m telescope was used to detect emission by CN.[12] Observations with ALMA detected carbon monoxide (CO) absorption against the background CO emission from the nebulae of the Rho Ophiuchi complex.[8][9] ALMA did detect CS in the disk. This study also detected emission by CO, with the CO absorption contained within the mid-plane.[7][3] A re-analysis of archived ALMA data found that CO, CS and CN decrease in the mid-plane. 12CO does map the low-density disk surface and CS and CS trace the intermediate layers and closer to the star also the mid-plane. The researchers find that CN is produced by ultraviolet and X-ray photons coming from the star, explaining its distribution within the disk.[2]

See also

[edit]
[edit]

References

[edit]
  1. ^ Angelo, Isabel; Duchene, Gaspard; Stapelfeldt, Karl; Telkamp, Zoie; Ménard, François; Padgett, Deborah; Van der Plas, Gerrit; Villenave, Marion; Pinte, Christophe; Wolff, Schuyler; Fischer, William J.; Perrin, Marshall D. (March 2023). "Demographics of Protoplanetary Disks: A Simulated Population of Edge-on Systems". The Astrophysical Journal. 945 (2): 130. arXiv:2302.04891. Bibcode:2023ApJ...945..130A. doi:10.3847/1538-4357/acbb01. ISSN 0004-637X. Spectral type estimated from the system's dynamical mass
  2. ^ a b Ruíz-Rodríguez, D.; Kastner, J.; Hily-Blant, P.; Forveille, T. (February 2021). "Tracing molecular stratification within an edge-on protoplanetary disk". Astronomy and Astrophysics. 646: A59. arXiv:2012.10466. Bibcode:2021A&A...646A..59R. doi:10.1051/0004-6361/202038209. ISSN 0004-6361.
  3. ^ a b c d Dutrey, A.; Guilloteau, S.; Piétu, V.; Chapillon, E.; Wakelam, V.; Di Folco, E.; Stoecklin, T.; Denis-Alpizar, O.; Gorti, U.; Teague, R.; Henning, T.; Semenov, D.; Grosso, N. (November 2017). "The Flying Saucer: Tomography of the thermal and density gas structure of an edge-on protoplanetary disk". Astronomy and Astrophysics. 607: A130. arXiv:1706.02608. Bibcode:2017A&A...607A.130D. doi:10.1051/0004-6361/201730645. ISSN 0004-6361.
  4. ^ a b c Pontoppidan, Klaus M.; Stapelfeldt, Karl R.; Blake, Geoffrey A.; van Dishoeck, Ewine F.; Dullemond, Cornelis P. (April 2007). "Deep Spitzer Spectroscopy of the Flying Saucer Edge-on Disk: Large Grains beyond 50 AU". The Astrophysical Journal. 658 (2): L111 – L114. arXiv:astro-ph/0702394. Bibcode:2007ApJ...658L.111P. doi:10.1086/514817. ISSN 0004-637X.
  5. ^ a b c Grosso, N.; Alves, J.; Wood, K.; Neuhäuser, R.; Montmerle, T.; Bjorkman, J. E. (March 2003). "Spatial Study with the Very Large Telescope of a New Resolved Edge-on Circumstellar Dust Disk Discovered at the Periphery of the ρ Ophiuchi Dark Cloud". The Astrophysical Journal. 586 (1): 296–305. arXiv:astro-ph/0211570. Bibcode:2003ApJ...586..296G. doi:10.1086/367557. ISSN 0004-637X.
  6. ^ information@eso.org. "Infrared Images of an Infant Solar System - ESO Telescopes Detect a Strange-Looking Object". www.eso.org. Retrieved 2025-05-09.
  7. ^ a b Simon, M.; Guilloteau, S.; Di Folco, E.; Dutrey, A.; Grosso, N.; Piétu, V.; Chapillon, E.; Prato, L.; Schaefer, G. H.; Rice, E.; Boehler, Y. (August 2017). "Dynamical Masses of Low-mass Stars in the Taurus and Ophiuchus Star-forming Regions". The Astrophysical Journal. 844 (2): 158. arXiv:1706.03505. Bibcode:2017ApJ...844..158S. doi:10.3847/1538-4357/aa78f1. ISSN 0004-637X.
  8. ^ a b Guilloteau, S.; Piétu, V.; Chapillon, E.; Di Folco, E.; Dutrey, A.; Henning, T.; Semenov, D.; Birnstiel, T.; Grosso, N. (February 2016). "The shadow of the Flying Saucer: A very low temperature for large dust grains". Astronomy and Astrophysics. 586: L1. arXiv:1601.01548. Bibcode:2016A&A...586L...1G. doi:10.1051/0004-6361/201527620. ISSN 0004-6361.
  9. ^ a b information@eso.org. "The Deep-Frozen Flying Saucer - ALMA finds unexpectedly cold grains in planet-forming disc". www.eso.org. Retrieved 2025-05-09.
  10. ^ Heese, S.; Wolf, S.; Dutrey, A.; Guilloteau, S. (July 2017). "Spread of the dust temperature distribution in circumstellar disks". Astronomy and Astrophysics. 604: A5. arXiv:1705.01811. Bibcode:2017A&A...604A...5H. doi:10.1051/0004-6361/201730501. ISSN 0004-6361.
  11. ^ Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M. (February 2012). "AKARI observations of ice absorption bands towards edge-on young stellar objects" (PDF). Astronomy & Astrophysics. 538: A57. Bibcode:2012A&A...538A..57A. doi:10.1051/0004-6361/201015999. ISSN 0004-6361.
  12. ^ Reboussin, L.; Guilloteau, S.; Simon, M.; Grosso, N.; Wakelam, V.; Di Folco, E.; Dutrey, A.; Piétu, V. (June 2015). "Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars. II. Stars in ρ Ophiuchi and upper Scorpius". Astronomy and Astrophysics. 578: A31. arXiv:1504.04542. Bibcode:2015A&A...578A..31R. doi:10.1051/0004-6361/201525705. ISSN 0004-6361.
  13. ^ "MIRI Filters and Dispersers - JWST User Documentation". jwst-docs.stsci.edu. Retrieved 2025-05-09.