Draft:The COHERENT Collaboration
Submission declined on 25 July 2025 by Stuartyeates (talk).
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
| ![]() |
Submission declined on 4 June 2025 by CSMention269 (talk). This draft's references do not show that the subject qualifies for a Wikipedia article. In summary, the draft needs multiple published sources that are: Declined by CSMention269 51 days ago.
| ![]() |
Comment: Wikipedia is build on secondary sources, which are not apparent here. Stuartyeates (talk) 21:53, 25 July 2025 (UTC)
Comment: In accordance with Wikipedia's Conflict of interest policy, I disclose that I have a conflict of interest regarding the subject of this article. PikutaMe (talk) 15:38, 23 May 2025 (UTC)
![]() | The following Wikipedia contributors may be personally or professionally connected to the subject of this page. Relevant policies and guidelines may include conflict of interest, autobiography, and neutral point of view. Their edits to this page were last checked for neutrality on 3 June 2025 by GoldRomean. |
![]() | |
Purpose | Detection of low-energy neutrino interactions |
---|---|
Location |
|
Membership | 100+ members world-wide |
Spokesperson | Kate Scholberg |
Website | https://sites.duke.edu/coherent/ |
The COHERENT Collaboration is a group of particle physics experiments that study the way low-energy neutrinos propagate and scatter off various nuclei with a suite of low threshold detectors at the Spallation Neutron Source in Oak Ridge, Tennessee.[1][2] Established in 2013,[3] the COHERENT collaboration was founded in order to search for coherent elastic neutrino-nucleus scattering (CEvNS).[4] COHERENT successfully measured CEvNS for the first time on a CsI[Na] target in 2017,[5][6][7] followed by measurements on Argon[8] and Germanium[9] in 2021 and 2024, respectively. In addition to CEvNS, COHERENT has measured inelastic neutrino scattering processes on 208Pb,[10] 127I[11] and Thorium.[12] COHERENT continues to operate and is deploying next generation CEvNS and inelastic detectors to explore a broader range of neutrino-nucleus interactions.[13][14]
Science principles and motivation
[edit]CEvNS
[edit]Coherent elastic neutrino nucleus scattering (CEvNS) is a particle physics interaction between a neutrino and an atomic nucleus. In the process, a neutrino of any flavor scatters off all of the constituent nucleons in phase (coherently) by the exchange of a Z boson with a momentum transfer low enough that the wavelength of the Z is comparable to the size of the nucleus. This inherently quantum mechanical, coherent process results in a significantly higher cross-section compared to other low energy neutrino processes that is effectively proportional to the number of neutrons in the nucleus squared. The CEvNS interaction is cleanly predicted by the standard model, resulting in an experimental signature of a low-energy recoiling nucleus, which typically has energies of 10s of keV.[4] Due to the cleanly predicted theoretical cross-section, CEvNS provides a precise test of the standard model--any deviations from the predicted recoil spectrum would imply the existence of physics beyond standard model (BSM). Examples of such signatures include tests of the electromagnetic properties of the neutrino,[15] non-standard neutrino interactions,[16] tests of the weak mixing angle,[17] supersymmetric extensions to the standard model and extra neutral weak currents,[18] and the neutron skin-depth of the nucleus.[19] A CEvNS neutral current detector can also test for the existence of sterile neutrinos.[20] Such detectors, when located at accelerator neutrino sources can also search for accelerator produced dark matter candidates.[21]
CEvNS is also the process with the highest cross-section for supernova neutrinos, making it an important signature that should be exploited. The coherent scattering of solar and astrophysical neutrinos is also an irreducible background for experimental searches for WIMP dark matter. As the highest neutrino-nucleus cross-section, CEvNS is also a viable candidate for the monitoring of neutrinos from nuclear reactors, with potential applications to nuclear non-proliferation and safeguards.[22]
Inelastic Neutrino-Nucleus Scattering
[edit]To date, there are few measurements of inelastic neutrino nucleus interactions at neutrino energies below 100 MeV.[23] The world's largest and most viable astrophysical neutrino detectors rely on inelastic neutrino-nucleus interactions to detect the next core collapse supernova.[24] The connection between the observation of this event and the improvement in understanding of supernova physics requires sufficient understanding of the inelastic neutrino-nucleus cross-sections. The Spallation Neutron Source produces neutrinos in the energy range relevant for measuring inelastic neutrino-nucleus interactions that can support astrophysical neutrino detectors.[25] Moreover, inelastic neutrino-nucleus interactions in the tens of MeV range involve nuclear physics phenomena with relevance to the searches for violations of fundamental symmetries such as neutrinoless double beta decay.[26]
History
[edit]Spallation neutron sources have, for decades, been identified as copious sources of low-energy neutrinos that can be used to study fundamental physics.[27] Such sources have included the LANSCE (LAMPF) beam at Los Alamos National Lab (LANL) and the ISIS beam at the Rutherford Appleton Laboratory. Since its inception, the high powered, pulsed Spallation Neutron Source, at Oak Ridge National Laboratory, in Tennessee, has been identified as a fertile ground for such efforts due to its high power and short beam duration—resulting in numerous proposed neutrino experiments.
Pre-COHERENT
[edit]ORLaND
[edit]- The ORLaND (Oak Ridge Laboratory for Neutrino Detectors) collaboration proposed to build an underground neutrino oscillation experiment containing 1.5 kton of mineral oil scintillator.[28] The proposed experiment to test neutrino oscillation signatures observed in the Liquid Scintillator Neutrino Detector (LSND) and Super-Kamiokande experiments was never built.
vSNS
[edit]- The vSNS collaboration aimed to use the spallation neutrinos from the SNS to study a broad array of neutrino and nuclear physics. The program included the search for Coherent Elastic Neutrino-Nucleus scattering, electroweak tests of the standard model, Neutrino Nucleus cross-sections for nuclear astrophysics, neutrino oscillations, and lepton number flavor violation in muon decay.[29] The vSNS program was not funded to proceed, but many of the proposed searches have informed and inspired COHERENT searches.
Osc SNS
[edit]- The OscSNS proposed experiment consisted of an 800-ton mineral oil detector located 60 meters from the SNS target in order to study the possible existence of short-baseline neutrino oscillations into sterile neutrinos. The OscSNS experiment[30] was not funded.
CLEAR
[edit]- The Coherent Low Energy A (Nuclear) Recoil (CLEAR) proposed experiment consisted of 456 kg of liquid argon or 391 kg of liquid neon, was designed to search for CEvNS interactions from the SNS. CLEAR[31] was never funded to proceed, but helped to inform and inspire the liquid argon and liquid neon detectors in COHERENT.
COHERENT Formation
[edit]Neutrino efforts at the SNS were revitalized in a May 2012 meeting at ORNL that highlighted and prioritized specific experiments that could address contemporary physics topics.[32] This was followed up in the Fall of 2012 at Sandia National Lab in Livermore, CA, which emphasized the importance of bringing the community together to achieve the first CEvNS measurement. In Spring 2013 the proto-collaboration of Coherent Scattering Investigations at the Spallation Neutron Source (CSISNS) was formed.[33] In the Spring of 2014, the COHERENT collaboration officially formed its charter.[34]
Institutional Members
[edit]The COHERENT Collaboration currently consists of over 100 members from 29 institutions across 6 countries. Participating institutions as of June 2025 are:[35]
- Canadian Nuclear Laboratories
- Carnegie Mellon University
- University of Chinese Academy of Social Sciences
- Concord University
- Duke University
- University of Florida
- Florida State University
- University of Hawaiʻi
- Institute for Cosmic Ray Research
- Indiana University
- Kyoto University
- Kurchatov Institute
- Laurentian University
- Los Alamos National Laboratory
- Moscow Engineering Physics Institute
- North Carolina Central University
- North Carolina State University
- Oak Ridge National Laboratory
- Okayama University
- Sandia National Laboratories
- Seoul National University
- SLAC National Accelerator Laboratory
- University of South Dakota
- University of Tennessee
- University of Tokyo
- Tufts University
- Triangle Universities Nuclear Laboratory
- Virginia Tech
- Washington & Jefferson College
Neutrinos at SNS
[edit]SNS
[edit]The Spallation Neutron Source (SNS) is a Department of Energy (DOE) Basic Energy Sciences (BES) user facility that produces high-intensity pulsed neutrons with applications in many disciplines such as biology, chemistry, and material sciences. The neutrons are produced by a process called spallation where protons are accelerated to high energies and collide with a liquid mercury target. In addition to the neutrons, a pulsed neutrino source is produced isotropically from the decay of charged pions. The pions produced at the SNS almost entirely decay at rest producing a source of neutrinos that is well understood in both energy and time, making them useful for precision studies of neutrino-nucleus interactions.
Neutrino Alley
[edit]Neutrino Alley is the sub-basement corridor of the SNS where the discovery of CEvNS occurred. In general, neutrons produced by the beam can be a background for searches for nuclear recoils induced by neutrinos. Neutrino Alley benefits from several meters of concrete and gravel backfill to provide a low neutron background environment, enabling the measurement of CEvNS at the SNS. The particular timing structure of the beam, along with this particular location in the facility, play large roles in making the SNS an ideal location to study CEvNS.
Impact of Measurements
[edit]CsI CEvNS
[edit]The CsI subsystem was a low-background, 14.6 kg CsI[Na] scintillator. It began collecting data in August of 2015 and announced the world's first observation of CEvNS two years later in the fall of 2017 at the 6.7 confidence level.[5]
Ar CEvNS
[edit]In 2020, CENNS-10 made the first observation of CEvNS on argon with a 3.5σ rejection of the null-CEvNS hypothesis.[8] After this measurement, data continued to be collected, and an analysis of this larger data set is ongoing with a projected sensitivity of 8.5σ.
Ge CEvNS
[edit]The COHERENT Ge array Ge-Mini observed CEvNS on germanium for the first time in 2023[9] with a 3.9σ rejection of the hypothesis. It is the lowest background measurement of CEvNS to date.[9] It continues to operate aiming for a precision measurement of CEvNS.
127I Charged-Current Scattering Measurement
[edit]The NaIvE detector reported a 5.8σ observation of electron-neutrino charged-current interactions on 127I.[11] By analyzing the energy distribution of the emitted electron, the collaboration evaluated cross sections with and without neutron emission. The cross section without neutron emission was consistent with prior measurements from the E-1213 experiment at LAMPF,[36] while the neutron-emitting channel appeared suppressed relative to theoretical predictions.
Pb Charged-Current Scattering Constraint
[edit]A joint analysis of data collected by the lead neutrino cube and a measurement with a liquid scintillator inside the CsI detector shielding[5] at the SNS yielded a cross section that is ~30% of the theoretically-predicted value. The cause of this suppression is unknown. It could potentially be due to a reduction in the inclusive cross section, a suppression of the neutron-emitting channel, or a lower-than-expected neutron energy distribution. Several follow-up experiments have been proposed to investigate this discrepancy.[10]
First Indications of Neutrino Induced Fission
[edit]The NuThor detector system reported the first indications of neutrino induced fission, using a 228Th target at 2.4σ.[12] By counting the number of neutrons emitted from the thorium after a pulse of neutrinos, the "Nu Fission" signal is able to be separated from environmental neutron backgrounds, neutrino-induced neutron emission on lead, and spontaneous fission. The detector continues to operate.
Detector subsystems
[edit]Subsystem | Target Material | |
---|---|---|
Current | COH-Ar-750 | Ar |
NaIvETe | NaI | |
D2O | D2O | |
H2O | H2O | |
NuThor | Th | |
MARS | Plastic Scintillator | |
NEP-ton | Pb | |
Ge-mini | Ge | |
Future | CryoCsI | CsI |
Neon | Ne | |
LArTPC | Ar | |
Metal Sandwich | Pb | |
H2O JP-Module | H2O | |
Plνt3o | Pb | |
Past | Scatter Camera | Liquid Scintillator |
Scibath | Plastic Scintillator | |
Eljen cell | Liquid Scintillator | |
NaIvE | NaI | |
CENNS-10 | Ar | |
CsI[Na] | CsI[Na] | |
Pb Nube | Pb | |
Fe Nube | Fe |
Current detector subsystems
[edit]COH-Ar-750 (Ar)
[edit]- COH-Ar-750 is the upcoming tonne-scale liquid argon detector for the COHERENT collaboration. It will detect visible light photons by wavelength-shifting liquid argon scintillation light for 122 3" photomultipler tubes to collect. Whereas its predecessor CENNS-10 observed approximately 120 CEvNS events in a year COH-Ar-750 will be capable of observing 30-40x that number in the same amount of time.
NaIvETe (NaI)
[edit]- NaIvETe is a collection of 5 modules each with 63 NaI[Tl] crystals of 7.7-kg for a total mass of over 2.4 tonnes.[11] NaIvETe plans to measure CEvNS on 23Na and continue the charged-current measurement of νe on 127I from its predecessor; the NaI neutrino Experiment (NaIvE). Each crystal is equipped with a dual-gain base to see both the keV scale CEvNS signal as well as the MeV scale charged-current signal.
D2O
[edit]- The neutrino flux at the SNS is not known to better than 10% uncertainty. The COHERENT collaboration has deployed a heavy water detector - D2O - to use the well predicted (ve,D) interaction to normalize the flux at the SNS for precision CEvNS experiments.[37] The detector consists of approximately 600kg of high purity deuterium oxide in an acrylic vessel instrumented with light collection to measure leptons from the neutrino nuclear interactions.
H2O
[edit]- The H2O module is a complementary, 1:1 replica of the D2O detector, consisting of 600kg of purified water, aimed at subtracting the systematic uncertainties caused by the oxygen charged-current cross-section and the detector construction materials.[38]
NuThor (Th)
[edit]- The NuThor detector is a bespoke neutron multiplicity meter hermetically surrounding a 52 kg thorium metal target.[12] The neutron multiplicity meter features custom-made water bricks doped with gadolinium nitrate to efficiently capture neutrons streaming out of the thorium. 36 NaI scintillating crystals are interspersed evenly throughout the gadolinium-loaded water to detect the gamma-rays emitted following neutron capture on gadolinium. The analysis of Science Run 2 yielded a 2.4σ rejection of the null hypothesis.
MARS (Plastic Scintillator)
[edit]- The MARS (Multiplicity And Recoil Spectrometer) detector system is a transportable fast neutron spectrometer made of gadolinium-doped plastic scintillator with sixteen photomultiplier tubes along its sides.[39] MARS searches for two coincident signals: a prompt scintillation pulse from proton recoils associated with the neutron thermalization, and a delayed pulse from the γ shower signifying a neutron capture and subsequent Gd de-excitation. While previously used to measure muogenic backgrounds, MARS is instrumental in determining neutron backgrounds at various locations in Neutrino Alley. MARS has measured the varied rate of beam-related neutrons at 4 distinct locations throughout Neutrino Alley, and efforts are underway to unfold the neutron spectrum at each of these locations.
NEP-ton (Pb)
[edit]- NEP-ton (Neutrino Experiment on Pb - tonscale) is a 640 kg lead glass Cherenkov detector. It aims to measure inclusive charged-current cross-section on lead.
Ge-mini (Ge)
[edit]- Ge-Mini is an array of eight ICPC HPGe detectors - each approximately 2.2 kilograms. ICPC germanium detectors leverage ultra-low capacitance readout electronics to measure ionized electrons(holes) with excellent resolution. The Ge-Mini detector system observed CEvNS for the first time in 2023.[9]
Future detector subsystems
[edit]CryoCsI (CsI)
[edit]- The planned cryogenic CsI subsystem is designed to significantly enhance the sensitivity to CEvNS detection.[40] Operating this pure CsI crystal at cryogenic temperatures, the light yield is increased by a factor of 2 to 4 compared to the original CsI[Na] detector, enabling a lower energy threshold. As a result, the number of observable CEvNS events is expected to increase by an order of magnitude for the same experimental exposure.
MicroCLEAR (Ne)
[edit]- The MicroCLEAR subsystem will search for CEvNS on ~21 kg of liquid neon (LNe) using the CENNS-10 single-phase liquid noble detector[41] previously used in the measurement of CEvNS on liquid argon (LAr). As a target, LNe benefits from low intrinsic backgrounds and similar scintillation properties as liquid argon. Neon contains light nuclei (approximately 90% 20Ne and 9% 22Ne), yielding lower uncertainty in the nuclear form factor. Additionally, the even-even nuclei carry no axial current interactions. Measurements of the CEvNS cross sections and a re-evaluation of the LNe quenching factor at low recoil energies are planned.
LArTPC (Ar)
[edit]- The liquid-argon time-projection chamber (LArTPC) detector is planned with a dimension of 50x60x60 cm3, corresponding to 250 kg of LAr in the active volume. The pixelated charge readout system along with the time projection will provide millimeter-scale tracking capability and calorimetry, enabling the differential cross section measurements of νe-Ar charged-current interactions and searches for physics beyond the Standard Model such as axion-like particles.
Metal sandwich (Pb)
[edit]- The metal sandwich is a future COHERENT detector for measuring electron neutrino charged-current cross-sections. The detector is comprised of alternating layers of metal and scintillator, with the first metal being 208Pb. In response to the anomalous result from the combined Eljen Cell and Pb Neutrino Cube analysis,[10] the layered anatomy of the detector tests the theoretical prediction that the electron neutrino charged-current cross-section on 208Pb depends on the scattering angle of the outgoing electron.[42] Other metals will go after further low energy electron neutrino charge-current measurements. Deployment is planned for late 2025.
H2O JP-Module
[edit]- The collaboration is currently building a 100 L H2O detector to measure the electron neutrino charged-current cross-section on 16O. The initial measurement will assist in the oxygen background subtraction for the D2O detector. The ultimate goal is to scale up to a 10-tonne version that supports astrophysical neutrino measurements at Super-Kamiokande and Hyper-Kamiokande.
Plνt3o (Pb)
[edit]- Plνt3o (Pb lepton ν twenty-two-tonne observatory) is a proposed 22 tonne lead glass detector[43] aiming to do a precision charged-current cross-section measurement on lead and act as a second baseline for a sterile ν search.
Past detector subsystems
[edit]Scatter Camera (Liquid Scintillator)
[edit]- The Neutron Scatter Camera (NSC) is composed of two planes of 16 x 5” liquid scintillator detectors each. By measuring energy deposition and time-of-flight between the two planes, fast neutron energy and directional information are able to be extracted. The NSC was deployed at the SNS, both in the instrument hall and the basement location, from 2013 to 2016 to assess the fast neutron backgrounds and establish a viable experimental location for the COHERENT experiment. NSC identified Neutrino Alley (basement utility hallway) as neutron quite zone.
Scibath (Plastic Scintillator)
[edit]- The SciBath detector[44] is a cubical volume of liquid scintillator read out with a 3D grid of 768 wavelength-shifting fibers coupled to 12 64-channel multianode phototubes read-out with custom-built readout modules. The fibers are arranged to collect light from localized energy deposits allowing for reconstruction of particle energy, direction, and type. Scibath was first used to study neutron backgrounds at Fermilab in 2011-2012.[45] It was then deployed at the SNS in Neutrino Alley in the Fall of 2015 and measured the beam-related fast neutron flux in the alcove location where the CENNS-10 liquid argon detector was later installed. This data then guided the background neutron analysis for the first observation of CEvNS in Argon made by CENNS-10.[8]
Eljen cell (Liquid Scintillator)
[edit]- The Eljen Cell detector subsystem was a dual-1.5 liter liquid scintillator (EJ-301), and an immediate precursor to CsI[Na][5] with the purpose of ascertaining two sources of beam-related backgrounds: SNS prompt neutrinos and NINs. The Eljen Cell subsystem began data acquisition on October 2014 with a similar shielding configuration to the future CsI[Na] detector, and ended its campaign on July 2015, successfully determining the neutron flux at the future CsI location and constraining the NIN rate on lead as a potential background to the upcoming search for CEvNS.
NaIvE (NaI)
[edit]- NaIvE (NaI Neutrino Experiment) is a detector composed of twenty-four NaI[Tl] scintillators--each approximately 7.7 kilograms. It was designed as a pathfinder experiment for a ton-scale NaI[Tl] detector aiming to measure CEvNS, and to measure the inclusive electron-neutrino charged-current cross section on 127I. The data it collected has lead to the first measurement of this cross section in 2023.[11] It was deployed in 2016 and is currently collecting data.
CENNS-10 (Ar)
[edit]- CENNS-10 is a 24-kg single-phase liquid argon detector deployed to the SNS in 2016 by the COHERENT collaboration to measure the CEvNS process. Liquid argon serves as both the target nucleus and the scintillator for CEvNS detection. Argon provides both a low-N nucleus with which to test the N2 dependence in the CEvNS cross section, and the large scintillation yield allows for low-threshold physics searches. The first measurement of CEvNS on argon was made by CENNS-10 in 2020.[8]
CsI[Na]
[edit]- The CsI subsystem was a 14.6 kg CsI[Na] scintillation crystal detector featuring high photoelectron yield and low-background shielding. In 2017, COHERENT made the first ever observation of CEvNS with the CsI detector system.[5]
Pb Nube
[edit]- The lead neutrino cube was a detector designed to measure neutrino-induced neutrons (NINs) produced in lead.[46] NINs are a potential background in coherent elastic neutrino-nucleus scattering (CEvNS) experiments, and in the HALO experiment, lead-based NINs serve as the primary detection mechanism for supernova neutrinos.[47] The lead neutrino cube operated from 2016 to 2021 using a 900 kilogram lead target embedded with neutron-sensitive liquid scintillator cells to detect NIN production. An analysis of its data reported a lower-than-predicted NIN production rate compared to theoretical predictions.[10]
Fe Nube
[edit]- The iron neutrino cube was a detector designed to measure neutrino-induced neutrons (NINs) produced in iron.[46] Because the NIN production threshold in iron is higher than in lead, a joint measurement in both materials could help isolate the high-energy component of the supernova neutrino flux.[48] The iron neutrino cube neutrino cube employed a 700-kg iron target embedded with neutron-sensitive liquid scintillators cells and operated from 2017 to 2021.[49]
References
[edit]- ^ Dunietz, Jesse. "Ever-Elusive Neutrinos Spotted Bouncing Off Nuclei for the First Time". Scientific American.
- ^ Chen, Sophia. "Physicists Capture the Elusive Neutrino Smacking Into an Atom's Core". Wired.
- ^ "The Collaboration". The COHERENT Collaboration.
- ^ a b Freedman, Daniel Z. (1 March 1974). "Coherent effects of a weak neutral current". Physical Review D. 9 (5): 1389–1392. Bibcode:1974PhRvD...9.1389F. doi:10.1103/PhysRevD.9.1389.
- ^ a b c d e Akimov, D.; Albert, J. B.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Brown, A.; Bolozdynya, A.; Cabrera-Palmer, B.; Cervantes, M.; Collar, J. I.; Cooper, R. J.; Cooper, R. L.; Cuesta, C.; Dean, D. J.; Detwiler, J. A.; Eberhardt, A.; Efremenko, Y.; Elliott, S. R.; Erkela, E. M.; Fabris, L.; Febbraro, M.; Fields, N. E.; Fox, W.; Fu, Z.; Galindo-Uribarri, A.; Green, M. P.; Hai, M.; Heath, M. R.; Hedges, S.; Hornback, D.; Hossbach, T. W.; Iverson, E. B.; Kaufman, L. J.; Ki, S.; Klein, S. R.; Khromov, A.; Konovalov, A.; Kremer, M.; Kumpan, A.; Leadbetter, C.; Li, L.; Lu, W.; Mann, K.; Markoff, D. M.; Miller, K.; Moreno, H.; Mueller, P. E.; Newby, J.; Orrell, J. L.; Overman, C. T.; Parno, D. S.; Penttila, S.; Perumpilly, G.; Ray, H.; Raybern, J.; Reyna, D.; Rich, G. C.; Rimal, D.; Rudik, D.; Scholberg, K.; Scholz, B. J.; Sinev, G.; Snow, W. M.; Sosnovtsev, V.; Shakirov, A.; Suchyta, S.; Suh, B.; Tayloe, R.; Thornton, R. T.; Tolstukhin, I.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Wan, Z.; Yoo, J.; Yu, C.-H.; Zawada, A.; Zettlemoyer, J.; Zderic, A. M. (15 September 2017). "Observation of coherent elastic neutrino-nucleus scattering". Science. 357 (6356): 1123–1126. arXiv:1708.01294. Bibcode:2017Sci...357.1123C. doi:10.1126/science.aao0990. PMID 28775215.
- ^ Conover, Emily (3 August 2017). "Neutrinos seen scattering off an atom's nucleus for the first time". Science News.
- ^ Timmer, John (3 August 2017). "After 43 years, gentle touch of a neutrino is finally observed". Ars Technica.
- ^ a b c d Akimov, D.; Albert, J. B.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M. A.; Blokland, L.; Bolozdynya, A.; Cabrera-Palmer, B.; Chen, N.; Chernyak, D.; Conley, E.; Cooper, R. L.; Daughhetee, J.; del Valle Coello, M.; Detwiler, J. A.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Fox, W.; Galindo-Uribarri, A.; Gallo Rosso, A.; Green, M. P.; Hansen, K. S.; Heath, M. R.; Hedges, S.; Hughes, M.; Johnson, T.; Kaemingk, M.; Kaufman, L. J.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Librande, J. T.; Link, J. M.; Liu, J.; Mann, K.; Markoff, D. M.; McGoldrick, O.; Moreno, H.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S.; Pershey, D.; Radford, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Rudik, D.; Runge, J.; Salvat, D. J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovtsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Thornton, R. T.; Tolstukhin, I.; Vanderwerp, J.; Varner, R. L.; Virtue, C. J.; Visser, G.; Wiseman, C.; Wongjirad, T.; Yang, J.; Yen, Y.-R.; Yoo, J.; Yu, C.-H.; Zettlemoyer, J. (7 January 2021). "First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon". Physical Review Letters. 126 (1): 012002. arXiv:2003.10630. Bibcode:2021PhRvL.126a2002A. doi:10.1103/PhysRevLett.126.012002. PMID 33480779.
- ^ a b c d Adamski, S.; et al. (2024). "First detection of coherent elastic neutrino-nucleus scattering on germanium". arXiv:2406.13806 [hep-ex].
- ^ a b c d An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belling, S. W.; Belov, V.; Bernardi, I.; Bock, C.; Bolozdynya, A.; Bouabid, R.; Brown, A.; Browning, J.; Cabrera-Palmer, B.; Cervantes, M.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Gallo Rosso, A.; Galindo-Uribarri, A.; Green, M. P.; Hakenmüller, J.; Heath, M. R.; Hedges, S.; Hughes, M.; Johnson, B. A.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Kyzylova, O.; Li, L.; Link, J. M.; Liu, J.; Major, A.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mattingly, J.; Miller, K.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Prior, C. G.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Salyapongse, A. M.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W. M.; Sosnovtsev, V.; Subedi, T.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Ujah, E.; Vanderwerp, J.; van Nieuwenhuizen, E. E.; Varner, R. L.; Virtue, C. J.; Visser, G.; Walkup, K.; Ward, E. M.; Wongjirad, T.; Yoo, J.; Yu, C.-H.; Zettlemoyer, J. (3 October 2023). "Measurement of production with a stopped-pion neutrino source". Physical Review D. 108 (7): 072001. doi:10.1103/PhysRevD.108.072001.
- ^ a b c d An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Bernardi, I.; Bock, C.; Bolozdynya, A.; Bouabid, R.; Brown, A.; Browning, J.; Cabrera-Palmer, B.; Cervantes, M.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Fabris, L.; Febbraro, M.; Gallo Rosso, A.; Galindo-Uribarri, A.; Germer, A. C.; Green, M. P.; Hakenmüller, J.; Heath, M. R.; Hedges, S.; Hughes, M.; Johnson, B. A.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Kyzylova, O.; Li, L.; Link, J. M.; Liu, J.; Mahoney, M.; Major, A.; Mann, K.; Markoff, D. M.; Mastroberti, J.; Mattingly, J.; Mueller, P. E.; Newby, J.; Parno, D. S.; Penttila, S. I.; Pershey, D.; Prior, C. G.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D. J.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Skuse, C.; Snow, W. M.; Sosnovtsev, V.; Subedi, T.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tsai, Y.-T.; Ujah, E.; Vanderwerp, J.; van Nieuwenhuizen, E. E.; Varner, R. L.; Virtue, C. J.; Visser, G.; Walkup, K.; Ward, E. M.; Wongjirad, T.; Yoo, J.; Yu, C.-H.; Zawada, A.; Zettlemoyer, J.; Zderic, A. (29 November 2023). "Measurement of Electron-Neutrino Charged-Current Cross Sections on with the COHERENT Detector". Physical Review Letters. 131 (22): 221801. doi:10.1103/PhysRevLett.131.221801. PMID 38101357.
- ^ a b c Johnson, Tyler (2024). The First Indication of Neutrino-Induced Nuclear Fission (PhD thesis). Durham, NC. ISBN 9798302161383. ProQuest 3156296008.
- ^ Akimov, D.; et al. (2022). "The COHERENT Experimental Program". arXiv:2204.04575 [hep-ex].
- ^ Barbeau, P. S.; Belov, V.; Bernardi, I.; Bock, C.; Bolozdynya, A.; Bouabid, R.; Browning, J.; Cabrera-Palmer, B.; Conley, E.; da Silva, V.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Erlandson, A.; Fabris, L.; Febbraro, M.; Galindo-Uribarri, A.; Green, M. P.; Hakenmüller, J.; Heath, M. R.; Hedges, S.; Johnson, B. A.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Kyzylova, O.; Link, J. M.; Liu, J.; Major, A.; Mann, K.; Markoff, D. M.; Mattingly, J.; Mueller, P. E.; Newby, J.; Ogoi, N.; O’Reilly, J.; Parno, D. S.; Pérez-Loureiro, D.; Penttila, S. I.; Pershey, D.; Prior, C. G.; Queen, J.; Rapp, R.; Ray, H.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Rudik, D.; Runge, J.; Salvat, D. J.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Snow, W. M.; Sosnovtsev, V.; Stringer, M.; Subedi, T.; Suh, B.; Sur, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tsai, Y.-T.; Vanderwerp, J.; van Nieuwenhuizen, E. E.; Varner, R. L.; Virtue, C. J.; Visser, G.; Walkup, K.; Ward, E. M.; Wongjirad, T.; Yang, Y.; Yoo, J.; Yu, C.-H.; Zaalishvili, A. (10 May 2024). "Accessing new physics with an undoped, cryogenic CsI CEvNS detector for COHERENT at the SNS". Physical Review D. 109 (9): 092005. arXiv:2311.13032. Bibcode:2024PhRvD.109i2005B. doi:10.1103/PhysRevD.109.092005.
- ^ Giunti, Carlo; Kouzakov, Konstantin; Li, Yu-Feng; Studenikin, Alexander (2025-04-24). "Neutrino Electromagnetic Properties". Annual Review of Nuclear and Particle Science. arXiv:2411.03122. doi:10.1146/annurev-nucl-102122-023242. ISSN 0163-8998.
- ^ Coloma, Pilar; Gonzalez-Garcia, M. C.; Maltoni, Michele; Pinheiro, João Paulo; Urrea, Salvador (2023-08-08). "Global constraints on non-standard neutrino interactions with quarks and electrons". Journal of High Energy Physics. 2023 (8): 32. arXiv:2305.07698. Bibcode:2023JHEP...08..032C. doi:10.1007/JHEP08(2023)032. ISSN 1029-8479.
- ^ Atzori Corona, M.; Cadeddu, M.; Cargioli, N.; Dordei, F.; Giunti, C.; Masia, G. (2023-07-31). "Nuclear neutron radius and weak mixing angle measurements from latest COHERENT CsI and atomic parity violation Cs data". The European Physical Journal C. 83 (7): 683. arXiv:2303.09360. Bibcode:2023EPJC...83..683A. doi:10.1140/epjc/s10052-023-11849-5. ISSN 1434-6052.
- ^ Liao, Jiajun; Marfatia, Danny (2017-12-10). "COHERENT constraints on nonstandard neutrino interactions". Physics Letters B. 775: 54–57. arXiv:1708.04255. Bibcode:2017PhLB..775...54L. doi:10.1016/j.physletb.2017.10.046. ISSN 0370-2693.
- ^ Patton, Kelly; Engel, Jonathan; McLaughlin, Gail C.; Schunck, Nicolas (2012-08-30). "Neutrino-nucleus coherent scattering as a probe of neutron density distributions". Physical Review C. 86 (2): 024612. arXiv:1207.0693. Bibcode:2012PhRvC..86b4612P. doi:10.1103/PhysRevC.86.024612.
- ^ Bisset, Iain A.; Dutta, Bhaskar; Huang, Wei-Chih; Strigari, Louis E. (2024-10-01). "Short baseline neutrino anomalies at stopped pion experiments". Journal of High Energy Physics. 2024 (10): 3. arXiv:2310.13194. Bibcode:2024JHEP...10..003B. doi:10.1007/JHEP10(2024)003. ISSN 1029-8479.
- ^ Akimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Blackston, M. A.; Bolozdynya, A.; Cabrera-Palmer, B.; Chen, N.; Conley, E.; Cooper, R. L.; Daughhetee, J.; del Valle Coello, M.; Detwiler, J. A. (2020-09-29). "Sensitivity of the COHERENT experiment to accelerator-produced dark matter". Physical Review D. 102 (5): 052007. Bibcode:2020PhRvD.102e2007A. doi:10.1103/PhysRevD.102.052007.
- ^ Akindele, Tomi; Bowden, Nathaniel; Carr, Rachel; Conant, Andrew; Diwan, Milind; Erickson, Anna; Foxe, Michael; Goldblum, Bethany; Huber, Patrick (2021-10-06). Nu Tools: Exploring Practical Roles for Neutrinos in Nuclear Energy and Security (Report). doi:10.2172/1826602.
- ^ Formaggio, J. A.; Zeller, G. P. (2012-09-24). "From eV to EeV: Neutrino cross sections across energy scales". Reviews of Modern Physics. 84 (3): 1307–1341. arXiv:1305.7513. Bibcode:2012RvMP...84.1307F. doi:10.1103/RevModPhys.84.1307.
- ^ Scholberg, Kate (2012-11-23). "Supernova Neutrino Detection". Annual Review of Nuclear and Particle Science. 62: 81–103. arXiv:1205.6003. Bibcode:2012ARNPS..62...81S. doi:10.1146/annurev-nucl-102711-095006. ISSN 0163-8998.
- ^ Akimov, D.; Albert, J. B.; An, P.; Awe, C.; Barbeau, P. S.; Becker, B.; Belov, V.; Blackston, M. A.; Bolozdynya, A. (2018-04-03), COHERENT 2018 at the Spallation Neutron Source, arXiv:1803.09183
- ^ Suhonen, Jouni T. (2017-11-16). "Value of the Axial-Vector Coupling Strength in β and ββ Decays: A Review". Frontiers in Physics. 5: 55. arXiv:1712.01565. Bibcode:2017FrP.....5...55S. doi:10.3389/fphy.2017.00055. ISSN 2296-424X.
- ^ Drukier, A.; Stodolsky, L. (1984-12-01). "Principles and applications of a neutral-current detector for neutrino physics and astronomy". Physical Review D. 30 (11): 2295–2309. Bibcode:1984PhRvD..30.2295D. doi:10.1103/PhysRevD.30.2295.
- ^ Avignone, F. T.; Anderso, B. D.; Awes, T. C.; Berridge, S.; Bilpuch, W.; Britton, C.; Bryan, W.; Bugg, W. M.; Burman, R. L.; Busenitz, J.; Carter, K.; Chatterjee, L.; Cianciolo, V.; Cochran, A. K.; Cohn, H. O. (2000-06-01). "ORLaND: A proposed neutrino facility at the Oak Ridge National Laboratory". Physics of Atomic Nuclei. 63 (6): 1007–1011. Bibcode:2000PAN....63.1007A. doi:10.1134/1.855740. ISSN 1562-692X.
- ^ Efremenko, Yu; Hix, W R (2009-06-01). "Opportunities for neutrino physics at the Spallation Neutron Source (SNS)". Journal of Physics: Conference Series. 173 (1): 012006. arXiv:0807.2801. Bibcode:2009JPhCS.173a2006E. doi:10.1088/1742-6596/173/1/012006. ISSN 1742-6596.
- ^ Collaboration, OscSNS (2013-05-17), OscSNS: A Precision Neutrino Oscillation Experiment at the SNS, arXiv:1305.4189
- ^ Scholberg, K.; Wongjirad, T.; Hungerford, E.; Empl, A.; Markoff, D.; Mueller, P.; Efremenko, Y.; McKinsey, D.; Nikkel, J. (2009-10-16), The CLEAR Experiment, arXiv:0910.1989
- ^ Bolozdynya, A.; Cavanna, F.; Efremenko, Y.; Garvey, G. T.; Gudkov, V.; Hatzikoutelis, A.; Hix, W. R.; Louis, W. C.; Link, J. M. (2012-11-22), Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper, arXiv:1211.5199
- ^ Akimov, D.; Bernstein, A.; Barbeau, P.; Barton, P.; Bolozdynya, A.; Cabrera-Palmer, B.; Cavanna, F.; Cianciolo, V.; Collar, J. (2013-10-01), Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper, arXiv:1310.0125
- ^ Collaboration, COHERENT; Akimov, D.; An, P.; Awe, C.; Barbeau, P. S.; Barton, P.; Becker, B.; Belov, V.; Bolozdynya, A. (2016-04-04), The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702
- ^ "Collaboration". COHERENT at the SNS. Retrieved 1 June 2025.
- ^ Distel, J. R.; Cleveland, B. T.; Lande, K.; Lee, C. K.; Wildenhain, P. S.; Allen, G. E.; Burman, R. L. (2003-11-25). "Measurement of the cross section for the reaction with neutrinos from the decay of stopped muons". Physical Review C. 68 (5): 054613. arXiv:nucl-ex/0208012. doi:10.1103/PhysRevC.68.054613.
- ^ Akimov, D.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M.A.; Bolozdynya, A.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Day, E.; Detwiler, J.; Ding, K.; Durand, M.R.; Efremenko, Y.; Elliott, S.R.; Fabris, L.; Febbraro, M.; Gallo Rosso, A.; Galindo-Uribarri, A.; Green, M.P.; Heath, M.R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Koros, J.; Kozlova, E.; Kumpan, A.; Li, L.; Link, J.M.; Liu, J.; Mann, K.; Markoff, D.M.; Mastroberti, J.; Mueller, P.E.; Newby, J.; Parno, D.S.; Penttila, S.I.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G.C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D.J.; Salyapongse, A.M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W.M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R.L.; Virtue, C.J.; Visser, G.; Ward, E.M.; Wiseman, C.; Wongjirad, T.; Yen, Y.-R.; Yoo, J.; Yu, C.-H.; Zettlemoyer, J. (1 August 2021). "A D 2 O detector for flux normalization of a pion decay-at-rest neutrino source". Journal of Instrumentation. 16 (8): P08048. arXiv:2104.09605. doi:10.1088/1748-0221/16/08/P08048.
- ^ Akimov, D.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M.A.; Bolozdynya, A.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Day, E.; Detwiler, J.; Ding, K.; Durand, M.R.; Efremenko, Y.; Elliott, S.R.; Fabris, L.; Febbraro, M.; Gallo Rosso, A.; Galindo-Uribarri, A.; Green, M.P.; Heath, M.R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Koros, J.; Kozlova, E.; Kumpan, A.; Li, L.; Link, J.M.; Liu, J.; Mann, K.; Markoff, D.M.; Mastroberti, J.; Mueller, P.E.; Newby, J.; Parno, D.S.; Penttila, S.I.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G.C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D.J.; Salyapongse, A.M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W.M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R.L.; Virtue, C.J.; Visser, G.; Ward, E.M.; Wiseman, C.; Wongjirad, T.; Yen, Y.-R.; Yoo, J.; Yu, C.-H.; Zettlemoyer, J. (1 August 2021). "A D 2 O detector for flux normalization of a pion decay-at-rest neutrino source". Journal of Instrumentation. 16 (8): P08048. arXiv:2104.09605. doi:10.1088/1748-0221/16/08/P08048.
- ^ Akimov, D.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Bernardi, I.; Blackston, M.A.; Bock, C.; Bolozdynya, A.; Browning, J.; Cabrera-Palmer, B.; Chernyak, D.; Conley, E.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M.R.; Efremenko, Y.; Elliott, S.R.; Fabris, L.; Febbraro, M.; Gallo Rosso, A.; Galindo-Uribarri, A.; Green, M.P.; Heath, M.R.; Hedges, S.; Hoang, D.; Hughes, M.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Li, L.; Link, J.M.; Liu, J.; Mann, K.; Markoff, D.M.; Mastroberti, J.; Mueller, P.E.; Newby, J.; Parno, D.S.; Penttila, S.I.; Pershey, D.; Rapp, R.; Ray, H.; Raybern, J.; Razuvaeva, O.; Reyna, D.; Rich, G.C.; Ross, J.; Rudik, D.; Runge, J.; Salvat, D.J.; Salyapongse, A.M.; Scholberg, K.; Shakirov, A.; Simakov, G.; Sinev, G.; Snow, W.M.; Sosnovstsev, V.; Suh, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tolstukhin, I.; Ujah, E.; Vanderwerp, J.; Varner, R.L.; Virtue, C.J.; Visser, G.; Wongjirad, T.; Yen, Y.-R.; Yoo, J.; Yu, C.-H.; Zettlemoyer, J.; Johnson, B.A. (1 March 2022). "Monitoring the SNS basement neutron background with the MARS detector". Journal of Instrumentation. 17 (3): P03021. arXiv:2112.02768. Bibcode:2022JInst..17P3021A. doi:10.1088/1748-0221/17/03/P03021.
- ^ Barbeau, P. S.; Belov, V.; Bernardi, I.; Bock, C.; Bolozdynya, A.; Bouabid, R.; Browning, J.; Cabrera-Palmer, B.; Conley, E.; da Silva, V.; Daughhetee, J.; Detwiler, J.; Ding, K.; Durand, M. R.; Efremenko, Y.; Elliott, S. R.; Erlandson, A.; Fabris, L.; Febbraro, M.; Galindo-Uribarri, A.; Green, M. P.; Hakenmüller, J.; Heath, M. R.; Hedges, S.; Johnson, B. A.; Johnson, T.; Khromov, A.; Konovalov, A.; Kozlova, E.; Kumpan, A.; Kyzylova, O.; Link, J. M.; Liu, J.; Major, A.; Mann, K.; Markoff, D. M.; Mattingly, J.; Mueller, P. E.; Newby, J.; Ogoi, N.; O’Reilly, J.; Parno, D. S.; Pérez-Loureiro, D.; Penttila, S. I.; Pershey, D.; Prior, C. G.; Queen, J.; Rapp, R.; Ray, H.; Razuvaeva, O.; Reyna, D.; Rich, G. C.; Rudik, D.; Runge, J.; Salvat, D. J.; Sander, J.; Scholberg, K.; Shakirov, A.; Simakov, G.; Snow, W. M.; Sosnovtsev, V.; Stringer, M.; Subedi, T.; Suh, B.; Sur, B.; Tayloe, R.; Tellez-Giron-Flores, K.; Tsai, Y.-T.; Vanderwerp, J.; van Nieuwenhuizen, E. E.; Varner, R. L.; Virtue, C. J.; Visser, G.; Walkup, K.; Ward, E. M.; Wongjirad, T.; Yang, Y.; Yoo, J.; Yu, C.-H.; Zaalishvili, A. (10 May 2024). "Accessing new physics with an undoped, cryogenic CsI CEvNS detector for COHERENT at the SNS". Physical Review D. 109 (9): 092005. arXiv:2311.13032. Bibcode:2024PhRvD.109i2005B. doi:10.1103/PhysRevD.109.092005.
- ^ Tayloe, R. (4 April 2018). "The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source". Journal of Instrumentation. 13 (4): C04005. arXiv:1801.00086. Bibcode:2018JInst..13C4005T. doi:10.1088/1748-0221/13/04/C04005.
- ^ Jachowicz, Natalie; Dessel, Nils Van; Nikolakopoulos, Alexis (2019-06-19), "Low-energy neutrino scattering in experiment and astrophysics", Journal of Physics G: Nuclear and Particle Physics, 46 (8), arXiv:1906.08191, Bibcode:2019JPhG...46h4003J, doi:10.1088/1361-6471/ab25d4
- ^ Aphecetche, L; Awes, T. C; Banning, J; Bathe, S; Bazilevsky, A; Belikov, S; Belyaev, S. T; Blume, C; Bobrek, M; Bucher, D; Bumazhnov, V; Büsching, H; Chernichenkov, S; Cianciolo, V; Cutshaw, M; D'Enterria, D. G; Daniels, S; David, G; Delagrange, H; Denisov, A; Durum, A; Efremenko, Y. V; Emery, M. S; Fokin, S. L; Frank, S; Goto, Y; Perdekamp, M. Grosse; Heine, N; Hurst, D. E; Ikonnikov, V. V; Ippolitov, M. S; Jackson, G; Jones, J. P; Karadjev, K. V; Kistenev, E; Klein-Bösing, C; Kochetkov, V; Koutcheryaev, Iou. A; Lebedev, V. A; Manko, V. I; Martinez, G; Melnikov, Y; Moore, T; Musrock, M; Nikolaev, S. A; Nyanin, A. S; Onuchin, V; Peitzmann, T; Pitukhin, P; Plasil, F; Read, K. F; Reygers, K; Santo, R; Schutz, Y; Semenov, V; Shelikhov, V; Sibiriak, Iou. G; Simpson, M; Smith, D. C; Smith, M; Soldatov, A; Stankus, P. W; Stewering, J; Stoll, S. P; Torii, H; Tsvetkov, A. A; Tyurin, N; Usachev, A; Vasiliev, A. A; Verhoeven, W; Vinogradov, A. A; Volkov, M. A; Walker, J. W; White, S. N; Wintenberg, A. L; Woody, C. L; Young, G. R; Yushmanov, I. E (1 March 2003). "PHENIX calorimeter". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 499 (2): 521–536. Bibcode:2003NIMPA.499..521A. doi:10.1016/S0168-9002(02)01954-X.
- ^ Cooper, R.; Garrison, L.; Meyer, H.-O.; Mikev, T.; Rebenitsch, L.; Tayloe, R. (2011-10-20), SciBath: A Novel Tracking Detector for Measuring Neutral Particles Underground, arXiv:1110.4432
- ^ Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E. (2014-04-03). "A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target". Physical Review D. 89 (7): 072004. arXiv:1311.5958. Bibcode:2014PhRvD..89g2004B. doi:10.1103/PhysRevD.89.072004.
- ^ a b Rich, Grayson (2019-03-20). Measurement of low-energy nuclear-recoil quenching factors in CsI[Na] and statistical analysis of the first observation of coherent, elastic neutrino-nucleus scattering (PhD thesis). Chapel Hill, NC.
- ^ Duba, C A; Duncan, F; Farine, J; Habig, A; Hime, A; Robertson, R G H; Scholberg, K; Shantz, T; Virtue, C J; Wilkerson, J F; Yen, S (2008-11-01). "HALO – the helium and lead observatory for supernova neutrinos". Journal of Physics: Conference Series. 136 (4): 042077. Bibcode:2008JPhCS.136d2077D. doi:10.1088/1742-6596/136/4/042077. ISSN 1742-6596.
- ^ Engel, J.; McLaughlin, G. C.; Volpe, C. (2003-01-23). "What can be learned with a lead-based supernova-neutrino detector?". Physical Review D. 67 (1): 013005. arXiv:hep-ph/0209267. Bibcode:2003PhRvD..67a3005E. doi:10.1103/PhysRevD.67.013005.
- ^ Hedges, Samuel (2024), Hedges, Samuel (ed.), "Neutrino-Induced Neutrons on Lead and Iron Nuclei", Low Energy Neutrino-Nucleus Interactions at the Spallation Neutron Source, Springer Theses, Cham: Springer Nature Switzerland, pp. 81–148, doi:10.1007/978-3-031-68110-3_6, ISBN 978-3-031-68110-3, retrieved 2025-06-03
- in-depth (not just passing mentions about the subject)
- reliable
- secondary
- independent of the subject
Make sure you add references that meet these criteria before resubmitting. Learn about mistakes to avoid when addressing this issue. If no additional references exist, the subject is not suitable for Wikipedia.