Jump to content

Draft:Acados

From Wikipedia, the free encyclopedia



Developer(s)Systems Control and Optimization Laboratory (research team of Prof. Moritz Diehl at the University of Freiburg)
Initial releaseAugust 27, 2019; 5 years ago (2019-08-27)
Written inC with interfaces to Python, GNU Octave, MATLAB, Simulink
Operating systemLinux, Windows and macOS
TypeNonlinear optimal control and mathematical optimization
License 2-clause BSD license (free software)
Websitedocs.acados.org

acados is a free and open source software framework for nonlinear model predictive control and moving horizon estimation.[1][2][3]. The software provides nonlinear solvers tailored to the specific problem structure arising in optimal control and trajectory optimization. It uses CasADi symbolic framework to define system equations and to compute derivatives through automatic differentiation. It is used for embedded applications both in academia[4] and industry such as the semi-automated driving software openpilot by comma.ai[5]. Further applications include quadrotor control[6][7][8], autonomous water taxis[9], legged locomotion[10], electric motor[11] and wind turbine control[12]

See also

[edit]

References

[edit]
  1. ^ Robin Verschueren; Gianluca Frison; Dimitris Kouzoupis; et al. (9 October 2021). "acados—a modular open-source framework for fast embedded optimal control". Mathematical Programming Computation. 14 (1): 147–183. doi:10.1007/S12532-021-00208-8. ISSN 1867-2957. Wikidata Q115144371.
  2. ^ Johannes Köhler; Matthias A. Müller; Frank Allgöwer (2024). "Analysis and design of model predictive control frameworks for dynamic operation—An overview". Annual Reviews in Control. 57: 100929. doi:10.1016/J.ARCONTROL.2023.100929. ISSN 1367-5788. Wikidata Q134301032.
  3. ^ Maximilian Schaller; Goran Banjac; Steven Diamond; Akshay Agrawal; Bartolomeo Stellato; Stephen Boyd (2022). "Embedded Code Generation With CVXPY" (PDF). IEEE control systems letters. 6: 2653–2658. doi:10.1109/LCSYS.2022.3173209. ISSN 2475-1456. Wikidata Q120716403.
  4. ^ Stano, P.; Montanaro, U.; Tavernini, D.; Tufo, M.; Fiengo, G.; Novella, L.; Sorniotti, A. (2023). "Model predictive path tracking control for automated road vehicles: A review". Annual Reviews in Control. 55: 194–236. doi:10.1016/j.arcontrol.2022.11.001.
  5. ^ "Openpilot 0.8.10". November 2021.
  6. ^ Romero, Angel; Penicka, Robert; Scaramuzza, Davide (2022). "Time-optimal online replanning for agile quadrotor flight". IEEE Robotics and Automation Letters. 7 (3): 7730–7737. doi:10.1109/LRA.2022.3147891 (inactive 6 May 2025).{{cite journal}}: CS1 maint: DOI inactive as of May 2025 (link)
  7. ^ Salzmann, Tim; Kaufmann, Elia; Arrizabalaga, Jon; Pavone, Marco; Scaramuzza, Davide; Ryll, Markus (2023). "Real-Time Neural MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms" (PDF). IEEE Robotics and Automation Letters. 8 (4): 2397–2404. doi:10.1109/lra.2023.3246839.
  8. ^ Edison Velasco-Sánchez; Luis F. Recalde; Bryan S. Guevara; José Varela-Aldás; Francisco A. Candelas; Santiago T. Puente; Daniel C. Gandolfo (March 2024). "Visual Servoing NMPC Applied to UAVs for Photovoltaic Array Inspection". IEEE robotics and automation letters. 9 (3): 2766–2773. arXiv:2311.08019. doi:10.1109/LRA.2024.3360876. ISSN 2377-3766. Wikidata Q128964934.
  9. ^ Homburger, H.; Wirtensohn, S.; Hoher, P.; Baur, T.; Griesser, D.; Diehl, M.; Reuter, J. (2025-06-01). "Solgenia—A test vessel toward energy-efficient autonomous water taxi applications". Ocean Engineering. 328: 121011. doi:10.1016/j.oceaneng.2024.121011 (inactive 6 May 2025).{{cite journal}}: CS1 maint: DOI inactive as of May 2025 (link)
  10. ^ Rathod, N.; Bratta, A.; Focchi, M.; Zanon, M.; Villarreal, O.; Semini, C.; Bemporad, A. (2021). "Model predictive control with environment adaptation for legged locomotion". IEEE Access. 9: 145710–145727. doi:10.1109/ACCESS.2021.3122356 (inactive 6 May 2025).{{cite journal}}: CS1 maint: DOI inactive as of May 2025 (link)
  11. ^ Zanelli, Andrea; Kullick, Julian; Eldeeb, Hisham M.; Frison, Gianluca; Hackl, Christoph M.; Diehl, Moritz (2022). "Continuous Control Set Nonlinear Model Predictive Control of Reluctance Synchronous Machines". IEEE Transactions on Control Systems Technology. 30: 130–141. arXiv:1910.10681. doi:10.1109/tcst.2020.3043956.
  12. ^ Stefan Loew; Carlo L Bottasso (3 August 2022). "Lidar-assisted model predictive control of wind turbine fatigue via online rainflow counting considering stress history". Wind Energy Science. 7 (4): 1605–1625. doi:10.5194/WES-7-1605-2022. ISSN 2366-7443. Wikidata Q114571268.