Jump to content

Chromosome condensation

From Wikipedia, the free encyclopedia
Figure 1 Interphase nucleus and mitotic chromosomes in human cells. Bar, 10 μm

Chromosome condensation refers to the process by which dispersed interphase chromatin is transformed into a set of compact, rod-shaped structures during mitosis and meiosis (Figure 1).[1][2][3][4][5]

The term "chromosome condensation" has long been used in biology. However, it is now increasingly recognized that mitotic chromosome condensation proceeds through mechanisms distinct from those governing "condensation" in physical chemistry (e.g., gas-to-liquid phase transitions) or the formation of "biomolecular condensates" in cell biology. Consequently, some researchers have argued that the term "chromosome condensation" may be misleading in this context. For this reason, alternative terms such as "chromosome assembly" or "chromosome formation" are also commonly used.

Processes of chromosome condensation

[edit]

From DNA to chromosomes

[edit]

A diploid human cell contains 46 chromosomes: 22 pairs of autosomes (22 × 2) and one pair of sex chromosomes (XX or XY). The total length of DNA within a single nucleus reaches ~2 m. These DNA molecules are initially wrapped around histones to form nucleosomes, which are further compacted into chromatin fibers, commonly referred to as 30-nm fibers. During interphase, these fibers are confined within the nucleus, which has a diameter of only ~10–20 um. During mitosis, chromatin is reorganized into a set of rod-shaped structures (i.e., mitotic chromosomes) that can be individually distinguished under a microscope.

This transformation was first described meticulously in the late 19th century by the German cytologist Walther Flemming. Originally, the term "chromosome" referred specifically to these highly condensed mitotic structures, although its meaning has since broadened (see chromosome).

In mitotic chromosomes of higher eukaryotes, DNA is compacted lengthwise by a factor of ~10,000. For example, human chromosome 8 contains a DNA molecule about 50 mm long, yet it is folded into a metaphase chromosome only ~5 um in length. This degree of compaction is comparable to folding a 600-meter-long thread (the height of the Tokyo Skytree) into the size of an AA battery.

Physiological significance of chromosome condensation

[edit]

As described above, although DNA in interphase is already organized into chromatin, it is dispersed throughout the nucleus and therefore not observed as individual chromosomes. Upon entry into prophase, condensation begins near the nuclear periphery, and fibrous structures gradually become visible. After nuclear envelope breakdown in prometaphase, condensation proceeds further. By metaphase, when condensation is apparently complete, the two sister chromatids of each chromosome can be clearly distinguished. This entire sequence of processes is often collectively referred to as chromosome condensation; however, due to our currently limited understanding of the higher-order structure of chromosomes, the precise definition of this term remains ambiguous.

Figure 2. Steps of chromosome condensation
Figure 3. Eukaryotic chromosome segregation

In principle, the process of chromosome condensation can be divided into three sequential but overlapping steps (Figure 2):[6]

1. Individualization – Disentanglement of chromatin fibers dispersed throughout the nucleus into discrete chromosome units.

2. Shaping/Compaction – Organization of each chromosome into a compact, rod-like structure.

3. Resolution – Resolution of replicated DNA strands within each chromosome into two distinct sister chromatids.

Although conceptually distinct, these steps occur concurrently and synergistically during mitosis. For this reason, the entire process is often collectively referred to as chromosome condensation. Importantly, chromosome condensation is not merely a reduction in chromatin length. Rather, it involves the organized folding of chromatin, initially in a random-coil–like state, into a highly structured rod-shaped form. This structural transformation is critical for ensuring the proper separation of sister chromatids during anaphase and provides the mechanical stiffness necessary for their faithful segregation (Figure 3).[7] Defects in chromosome condensation can impair chromosome segregation and ultimately lead to genome instability.

Protein factors essential for chromosome condensation

[edit]

Eukaryotic chromosome condensation has long been regarded as a highly complex process involving numerous proteins. However, recent studies have shown that single chromatids can be reconstituted in vitro by mixing sperm nuclei with only six purified proteins: core histones, three histone chaperones, topoisomerase II, and condensin I.[8][9] The three histone chaperones serve distinct roles in this reconstitution assay: (1) Npm2 (Nucleoplasmin 2) removes basic sperm-specific proteins from sperm chromatin; (2) Nap1 (Nucleosome assembly protein 1) deposits core histones H2A-H2B onto DNA to form nucleosomes; (3) FACT (Facilitates Chromatin Transcription) dynamically remodels nucleosomes, thereby aiding the actions of topoisomerase II and condensin I. These chaperones do not remain associated with the final product of mitotic chromatids. In other words, the core reactions of mitotic chromosome condensation can be recapitulated using only three structural proteins, core histones, topoisomerase II, and condensin I, provided that their actions are aided by appropriate chaperone-mediated regulation.

Independent lines of previous evidence support this simple picture of chromosome condensation. For example, it has long been known that histones account for approximately half of the total protein mass in mitotic chromosomes. Both topoisomerase II and condensin I have been identified as major structural components of mitotic chromosomes [10][11] as well as of the so-called chromosome scaffold.[12] Functional assays using Xenopus egg extracts [10][11] and genetic analyses in fission yeast [13][14] have demonstrated that both proteins are essential for properly assembling mitotic chromosomes.

Surprisingly, it has been shown that chromosome-like structures can be assembled in Xenopus egg extracts even under conditions in which nucleosome assembly is suppressed, in a manner dependent on condensins and topoisomerase II.[15][9] These “nucleosome-depleted" chromosomes consist of a central condensin-enriched axis and extended DNA loops emanating from it. This observation indicates that condensins are essential for the shaping of chromosome architecture, whereas histones contribute to the compaction of DNA loops.

Regulation of chromosome condensation

[edit]

Chromosome condensation is a process unique to mitosis and meiosis, and thus, the proteins involved in this process are subject to cell cycle regulation, often mediated by post-translational modifications (PTMs).

Among these, the most intensively studied mechanism is the phosphorylation of condensin complexes. It has been shown that phosphorylation by Cdk1 is essential for both the DNA supercoiling activity [16] and chromosome assembly activity [8] of condensin I. Experiments using Xenopus egg extracts have led to a proposed mechanism in which phosphorylation of the N-terminal region of the CAP-H subunit relieves its self-suppression, thereby activating condensin I.[17] Similarly, in condensin II, Cdk1-dependent phosphorylation of the C-terminal region of the CAP-D3 subunit plays a role in releasing its inhibitory constraint.[18][19] However, phosphoregulation of condensins is complex and multilayered, and a full mechanistic understanding has not yet been achieved.

Topoisomerase II is also subject to numerous PTMs. However, it remains unclear whether any of these modifications specifically regulate its activity during mitosis.[20][21]

Mitotic phosphorylation of linker histone H1 and core histone H3 has been known for decades.[22] Nevertheless, there is currently no direct evidence that these modifications actively or directly regulate chromosome condensation. In contrast, histone deacetylation has recently been reported to play an important role in this process through a mechanism of phase transition.[23]

In addition to PTMs, external regulatory factors also contribute to the regulation of chromosome condensation. For example, KIF4A, a chromokinesin, acts as a positive regulator of condensin I,[24][25] whereas MCPH1, a microcephaly-associated protein, serves as a negative regulator of condensin II.[26][27] Ki-67, a nucleolar protein, plays a critical role in chromosome individualization during early mitosis by coating the surface of mitotic chromosomes.[28][29]

Models of mitotic chromosomes and emerging experimental approaches

[edit]

How chromatin fibers are folded within mitotic chromosomes remains an unsolved question in cell biology. Several models have been proposed to explain the higher-order architecture of condensed chromosomes. Classical models include the hierarchical folding model [30] and the radial loop model.[31] More recently, additional models such as the polymer model [32] and the hierarchical folding and axial glue model [33] have been introduced.

One of the major reasons for the slow progress in understanding the folding of chromatin fibers within mitotic chromosomes has been the limited availability of experimental tools for their structural analysis. Recently, however, the development of a variety of new technologies has enabled more detailed and multifaceted investigations.

  • Imaging-based approaches
    • Cryo-electron tomography (Cryo-ET) for high-resolution 3D structure [48][49]
    • Nano-scale 3D DNA tracing to map chromosome architecture [50]
    • FAST CHIMP (Facilitated Segmentation and Tracking of Chromosomes in Mitosis Pipeline) for mitotic chromosome tracking [51]
    • Single-nucleosome imaging to analyze nucleosome dynamics within mitotic chromosomes [52]
  • Theoretical modeling and computational simulation
    • Modeling mitotic chromosome assembly through a loop extrusion mechanism [57]
    • Modeling mitotic chromosome assembly through a loop capture mechanism [58]
    • Modeling mitotic chromosome assembly by incorporating condensin–condensin interactions [59]
    • Modeling mitotic chromosome assembly through a bridging-induced attraction mechanism [60]

Chromosome condensation in prokaryotes

[edit]
Figure 4. Bacterial chromosome segregation

Although bacteria lack histones, their genomic DNA associates with various nucleoid-associated proteins (NAPs) to form the nucleoid, a functional counterpart of the eukaryotic chromosome.

In bacteria, DNA compaction is facilitated by the introduction of negative supercoils (typically of the plectonemic type) by the enzyme DNA gyrase, a bacterial type II topoisomerase. In contrast, archaea possess histone-like proteins, and in some species, a nucleosome-like particle with ~60 base pair periodicity[61] or an extended polymeric structure[62] have been observed. Recent advances in metagenomics and structure prediction algorithms have led to the discovery and classification of numerous histone-like proteins across prokaryotes.[63]

Many bacterial and archaeal species also possess SMC protein complexes analogous to eukaryotic condensins, including SMC–ScpAB and MukBEF, which play direct roles in organizing the nucleoid structure.[64][65][66] Loss-of-function mutations in these complexes cause abnormal nucleoid morphology and defects in chromosome segregation. Thus, prokaryotes undergo a process functionally equivalent to chromosome condensation, which is critical for ensuring proper chromosome segregation within a spatially confined cell volume (Figure 4). Furthermore, Hi-C) technology has been applied to study the dynamics of nucleoid reorganization mediated by bacterial condensin in several model organisms, including Caulobacter crescentus,[67] Bacillus subtilis,[68] and Escherichia coli.[69]

The following table summarizes the similarities and differences in chromosome architecture between eukaryotes and prokaryotes. Such comparisons are crucial for redefining the process of chromosome condensation at the molecular level and for gaining insights into the evolutionary principles underlying higher-order chromosome organization.[70][71]

DNA binding protein local structure determinant of local structure determinant of global structure disentangling enzyme
eukaryotes histones left-handed toroidal  nucleosome condensin topoisomerase II
prokaryotes NAPs negatively supercoiled  DNA gyrase SMC-ScpAB/MukBEF topoisomerase IV

See also

[edit]

References

[edit]
  1. ^ Swedlow JR, Hirano T (2003). "The making of the mitotic chromosome: modern insights into classical questions". Mol. Cell. 11 (3): 557–569. doi:10.1016/s1097-2765(03)00103-5. PMID 12667441.
  2. ^ Belmont AS (2006). "Mitotic chromosome structure and condensation". Curr Opin Cell Biol. 18 (6): 632–638. doi:10.1016/j.ceb.2006.09.007. PMID 17046228.
  3. ^ Marko JF (2008). "Micromechanical studies of mitotic chromosomes". Chromosome Res. 16 (3): 469–497. doi:10.1007/s10577-008-1233-7. PMID 18461485.
  4. ^ Batty P, Gerlich DW (2019). "Mitotic chromosome mechanics: How cells segregate their genome". Trends Cell Biol. 29 (9): 717–726. doi:10.1016/j.tcb.2019.05.007. PMID 31230958.
  5. ^ Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC (2021). "Mitotic chromosomes". Semin. Cell Dev. Biol. 117: S1084-9521(21)00061-6. doi:10.1016/j.semcdb.2021.03.014. PMC 8406421. PMID 33836947.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Hirano T (2004). "Chromosome shaping by two condensins". Cell Cycle. 3 (1): 26–28. doi:10.4161/cc.3.1.633. PMID 14657659.
  7. ^ Hirano T (2005). "Condensins: organizing and segregating the genome". Curr. Biol. 15 (7): R265-275. Bibcode:2005CBio...15.R265H. doi:10.1016/j.cub.2005.03.037. PMID 15823530.
  8. ^ a b c Shintomi K, Takahashi TS, Hirano T (2015). "Reconstitution of mitotic chromatids with a minimum set of purified factors". Nat Cell Biol. 17 (8): 1014–1023. doi:10.1038/ncb3187. PMID 26075356.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ a b c Shintomi K, Hirano T (2021). "Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly". Nat Commun. 12 (1): 2917. Bibcode:2021NatCo..12.2917S. doi:10.1038/s41467-021-23205-w. PMC 8131626. PMID 34006877.
  10. ^ a b Hirano T, Mitchison TJ (1993). "Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts". J Cell Biol. 120 (3): 601–612. doi:10.1083/jcb.120.3.601. PMC 2119547. PMID 8381118.
  11. ^ a b Hirano T, Kobayashi R, Hirano M. (1997). "Condensins, chromosome condensation complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein". Cell. 89 (4): 511–21. doi:10.1016/s0092-8674(00)80233-0. PMID 9160743.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Maeshima K, Laemmli UK (2003). "A two-step scaffolding model for mitotic chromosome assembly". Dev Cell. 4 (4): 467–480. doi:10.1016/s1534-5807(03)00092-3. PMID 12689587.
  13. ^ Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M (1987). "DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe". Cell. 50 (6): 917–925. doi:10.1016/0092-8674(87)90518-6. PMID 3040264.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M (1994). "Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis". EMBO J. 13 (20): 4938–4952. doi:10.1002/j.1460-2075.1994.tb06821.x. PMC 395434. PMID 7957061.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T. (2017). "Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts". Science, 356 (6344):1284-1287. PMID 28522692
  16. ^ Kimura K, Hirano M, Kobayashi R, Hirano T (1998). "Phosphorylation and activation of 13S condensin by Cdc2 in vitro". Science. 282 (5388): 487–490. Bibcode:1998Sci...282..487K. doi:10.1126/science.282.5388.487. PMID 9774278.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T (2022). "Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit". eLife. 11: e84694. doi:10.7554/eLife.84694. PMC 9797191. PMID 36511239.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T (2022). "Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays". eLife. 11: e78984. doi:10.7554/eLife.78984. PMC 9433093. PMID 35983835.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Yoshida MM, Kinoshita K, Shintomi K, Aizawa Y, Hirano T (2024). "Regulation of condensin II by self-suppression and release mechanisms". Mol Biol Cell. 35 (2): ar21. doi:10.1091/mbc.E23-10-0392. PMC 10881152. PMID 38088875.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Dekker B, Dekker J (2022). "Regulation of the mitotic chromosome folding machines". Biochem J. 479 (20): 2153–2173. doi:10.1042/BCJ20210140. PMC 9704520. PMID 36268993.
  21. ^ Lee JH, Berger JM (2019). "Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II". Genes (Basel). 10 (11): 859. doi:10.3390/genes10110859. PMC 6893486. PMID 31671531.
  22. ^ Bradbury EM (1992). "Reversible histone modifications and the chromosome cell cycle". BioEssays. 14 (1): 9–16. doi:10.1002/bies.950140103. PMID 1312335.
  23. ^ Schneider MWG, Gibson BA, Otsuka S, Spicer MFD, Petrovic M, Blaukopf C, Langer CCH, Batty P, Nagaraju T, Doolittle LK, Rosen MK, Gerlich DW (2022). "A mitotic chromatin phase transition prevents perforation by microtubules". Nature. 609 (7925): 183–190. Bibcode:2022Natur.609..183S. doi:10.1038/s41586-022-05027-y. PMC 9433320. PMID 35922507.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^ Takahashi M, Wakai T, Hirota T (2016). "Condensin I-mediated mitotic chromosome assembly requires association with chromokinesin KIF4A". Genes Dev. 30 (17): 1931–1936. doi:10.1101/gad.282855.116. PMC 5066236. PMID 27633014.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ Cutts EE, Tetiker D, Kim E, Aragon L (2024). "Molecular mechanism of condensin I activation by KIF4A". EMBO J. 44 (3): 682–704. doi:10.1038/s44318-024-00340-w. PMC 11790958. PMID 39690239.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T (2011). "MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II". J. Cell Biol. 194 (6): 841–854. doi:10.1083/jcb.201106141. PMC 3207293. PMID 21911480.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Houlard M, Cutts EE, Shamim MS, Godwin J, Weisz D, Presser Aiden A, Lieberman Aiden E, Schermelleh L, Vannini A, Nasmyth K (2021). "MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface". eLife. 10 (2): 451–469. doi:10.7554/eLife.73348. PMC 8673838. PMID 34850993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. ^ Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B, Poser I, Ellenberg J, Hyman AA, Gerlich DW (2016). "Ki-67 acts as a biological surfactant to disperse mitotic chromosomes". Nature. 535 (7611): 308–312. Bibcode:2016Natur.535..308C. doi:10.1038/nature18610. PMC 4947524. PMID 27362226.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Takagi M, Ono T, Natsume T, Sakamoto C, Nakao M, Saitoh N, Kanemaki MT, Hirano T, Imamoto N (2018). "Ki-67 and condensins support the integrity of mitotic chromosomes through distinct mechanisms". J Cell Sci. 131 (6): jcs212092. doi:10.1242/jcs.212092. PMID 29487178.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Sedat J, Manuelidis L (1978). "A direct approach to the structure of eukaryotic chromosomes". Cold Spring Harb. Symp. Quant. Biol. 42: 331–350. doi:10.1101/sqb.1978.042.01.035. PMID 98280.
  31. ^ Paulson JR, Laemmli UK (1977). "The structure of histone-depleted metaphase chromosomes". Cell. 12 (3): 817–828. doi:10.1016/0092-8674(77)90280-x. PMID 922894.
  32. ^ Marko JF, Siggia ED (1997). "Polymer models of meiotic and mitotic chromosomes". Mol. Biol. Cell. 8 (11): 2217–2231. doi:10.1091/mbc.8.11.2217. PMC 25703. PMID 9362064.
  33. ^ Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004). "Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure". J. Cell Biol. 166 (6): 775–785. doi:10.1083/jcb.200406049. PMC 2172117. PMID 15353545.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013). "Organization of the mitotic chromosome". Science. 342 (6161): 948–953. Bibcode:2013Sci...342..948N. doi:10.1126/science.1236083. PMC 4040465. PMID 24200812.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Eagen KP, Hartl A, Kornberg RD (2015). "Stable chromosome condensation revealed by chromosome conformation capture". Cell. 163 (4): 934–946. doi:10.1016/j.cell.2015.10.026. PMC 4639323. PMID 26544940.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F (2017). "Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast". Nat Genet. 49 (10): 1553–1557. doi:10.1038/ng.3938. PMC 5621628. PMID 28825727.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, Dekker J, Mirny L, Baxter J (2017). "SMC complexes differentially compact mitotic chromosomes according to genomic context". Nat Cell Biol. 19 (9): 1071–1080. doi:10.1038/ncb3594. PMC 5640152. PMID 28825700.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J (2018). "A pathway for mitotic chromosome formation". Science. 359 (6376): eaao6135. doi:10.1126/science.aao6135. PMC 5924687. PMID 29348367.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Zhao H, Shu L, Qin S, Lyu F, Liu F, Lin E, Xia S, Wang B, Wang M, Shan F, Lin Y, Zhang L, Gu Y, Blobel GA, Huang K, Zhang H (2025). "Extensive mutual influences of SMC complexes shape 3D genome folding". Nature. 640 (8058): 543–553. Bibcode:2025Natur.640..543Z. doi:10.1038/s41586-025-08638-3. PMID 40011778.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Puǎčeková N, Abad MA, Spanos C, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC (2025). "Rules of engagement for condensins and cohesins guide mitotic chromosome formation". Science. 388 (6743): eadq1709. Bibcode:2025Sci...388q1709S. doi:10.1126/science.adq1709. PMID 40208986.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Kinoshita K, Kobayashi TJ, Hirano T (2015). "Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes". Dev Cell. 33 (1): 94–106. doi:10.1016/j.devcel.2015.01.034. PMID 25850674.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. ^ Kinoshita K, Tsubota Y, Tane S, Aizawa Y, Sakata R, Takeuchi K, Shintomi K, Nishiyama T, Hirano T (2022). "A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping". J Cell Biol. 221 (3): e202109016. doi:10.1083/jcb.202109016. PMC 8932526. PMID 35045152.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T (2017). "Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts". Science. 356 (6344): 1284–1287. Bibcode:2017Sci...356.1284S. doi:10.1126/science.aam9702. PMID 28522692.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. ^ Strick TR, Kawaguchi T, Hirano T (2004). "Real-time detection of single-molecule DNA compaction by condensin I". Curr Biol. 14 (10): 874–880. Bibcode:2004CBio...14..874S. doi:10.1016/j.cub.2004.04.038. PMID 15186743.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ Sun M, Amiri H, Tong AB, Shintomi K, Hirano T, Bustamante C, Heald R (2023). "Monitoring the compaction of single DNA molecules in Xenopus egg extract in real time". Proc Natl Acad Sci USA. 120 (12): e2221309120. Bibcode:2023PNAS..12021309S. doi:10.1073/pnas.2221309120. PMC 10041109. PMID 36917660.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017). "The condensin complex is a mechanochemical motor that translocates along DNA". Science. 358 (6363): 672–676. Bibcode:2017Sci...358..672T. doi:10.1126/science.aan6516. PMC 5862036. PMID 28882993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C (2018). "Real-time imaging of DNA loop extrusion by condensin". Science. 360 (6384): 102–105. Bibcode:2018Sci...360..102G. doi:10.1126/science.aar7831. PMC 6329450. PMID 29472443.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. ^ Beel AJ, Azubel M, Mattei PJ, Kornberg RD (2021). "Structure of mitotic chromosomes". Mol Cell. 81 (21): 4369–4376.e3. doi:10.1016/j.molcel.2021.08.020. PMC 8571045. PMID 34520722.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ McDonald A, Murre C, Sedat JW (2024). "Helical coiled nucleosome chromosome architectures during cell cycle progression". Proc Natl Acad Sci U S A. 121 (43): e2410584121. Bibcode:2024PNAS..12110584M. doi:10.1073/pnas.2410584121. PMC 11513933. PMID 39401359.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. ^ Beckwith KS, Brunner A, Morero NR, Jungmann R, Ellenberg J (2025). "Nanoscale DNA tracing reveals the self-organization mechanism of mitotic chromosomes". Cell. 186 (6): 1234–1245. doi:10.1016/j.cell.2025.02.028. PMID 40132578.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. ^ Stamatov R, Uzunova S, Kicheva Y, Karaboeva M, Blagoev T, Stoynov S (2025). "Supra-second tracking and live-cell karyotyping reveal principles of mitotic chromosome dynamics". Nat Cell Biol. 27 (4): 654–667. doi:10.1038/s41556-025-01637-6. PMC 11991918. PMID 40185948.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. ^ Hibino K, Sakai Y, Tamura S, Takagi M, Minami K, Natsume T, Shimazoe MA, Kanemaki MT, Imamoto N, Maeshima K (2024). "Single-nucleosome imaging unveils that condensins and nucleosome-nucleosome interactions differentially constrain chromatin to organize mitotic chromosomes". Nat Commun. 15 (1): 7152. Bibcode:2024NatCo..15.7152H. doi:10.1038/s41467-024-51454-y. PMC 11339268. PMID 39169041.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. ^ Poirier MG, Monhait T, Marko JF (2002). "Reversible hypercondensation and decondensation of mitotic chromosomes studied using combined chemical-micromechanical techniques". J Cell Biochem. 85 (2): 422–434. doi:10.1002/jcb.10132. PMID 11948697.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. ^ Poirier MG, Marko JF (2002). "Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold". Proc Natl Acad Sci U S A. 99 (24): 15393–15397. doi:10.1073/pnas.232442599. PMC 137727. PMID 12438695.
  55. ^ Meijering AEC, Sarlós K, Nielsen CF, Witt H, Harju J, Kerklingh E, Haasnoot GH, Bizard AH, Heller I, Broedersz CP, Liu Y, Peterman EJG, Hickson ID, Wuite GJL (2022). "Nonlinear mechanics of human mitotic chromosomes". Nature. 605 (7910): 545–550. Bibcode:2022Natur.605..545M. doi:10.1038/s41586-022-04666-5. PMC 9117150. PMID 35508652.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. ^ Witt H, Harju J, Chameau EMJ, Bruinsma CMA, Clement TVM, Nielsen CF, Hickson ID, Peterman EJG, Broedersz CP, Wuite GJL (2024). "Ion-mediated condensation controls the mechanics of mitotic chromosomes". Nat Mater. 23 (11): 1556–1562. Bibcode:2024NatMa..23.1556W. doi:10.1038/s41563-024-01975-0. PMC 11525168. PMID 39284894.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  57. ^ Goloborodko A, Imakaev MV, Marko JF, Mirny L (2016). "Compaction and segregation of sister chromatids via active loop extrusion". eLife. 5: doi: 10.7554/eLife.14864. doi:10.7554/eLife.14864. PMC 4914367. PMID 27192037.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. ^ Gerguri T, Fu X, Kakui Y, Khatri BS, Barrington C, Bates PA, Uhlmann F (2021). "Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast". Nucl Acids Res. 49 (3): 1294–1312. doi:10.1093/nar/gkaa1270. PMC 7897502. PMID 33434270.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. ^ Sakai Y, Mochizuki A, Kinoshita K, Hirano T, Tachikawa M. (2018). "Modeling the functions of condensin in chromosome shaping and segregation". PLOS Comput Biol. 14 (6): e1006152. doi: 10.1371/journal.pcbi.1006152. Bibcode:2018PLSCB..14E6152S. doi:10.1371/journal.pcbi.1006152. PMC 6005465. PMID 29912867.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. ^ Forte G, Boteva L, Conforto F, Gilbert N, Cook PR, Marenduzzo D (2024). "Bridging condensins mediate compaction of mitotic chromosomes". J Cell Biol. 223 (1): e202209113. doi:10.1083/jcb.202209113. PMC 10655892. PMID 37976091.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. ^ Pereira SL, Grayling RA, Lurz R, Reeve JN (2006). "Archaeal nucleosomes". Proc. Natl. Acad. Sci. USA. 94 (23): 12633–12637. doi:10.1073/pnas.94.23.12633. PMC 25063. PMID 9356501.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. ^ Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, Byrne KR, Lee T, Ahn NG, Santangelo TJ, Reeve JN, Luger K (2017). "Structure of histone-based chromatin in Archaea". Science. 357 (6351): 609–612. doi:10.1126/science.aaj1849. PMC 5747315. PMID 28798032.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. ^ Schwab S, Hu Y, van Erp B, Cajili MKM, Hartmann MD, Hernandez Alvarez B, Alva V, Boyle AL, Dame RT (2024). "Histones and histone variant families in prokaryotes". Nat Commun. 15 (1): 7950. Bibcode:2024NatCo..15.7950S. doi:10.1038/s41467-024-52337-y. PMC 11390915. PMID 39261503.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. ^ Graumann PL, Knust T (2009). "Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair". Chromosome Res. 17 (2): 265–275. doi:10.1007/s10577-008-9014-x. PMID 19308706.
  65. ^ Reyes-Lamothe R, Nicolas E, Sherratt DJ (2012). "Chromosome replication and segregation in bacteria". Annu. Rev. Genet. 46: 121–143. doi:10.1146/annurev-genet-110711-155421. PMID 22934648.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. ^ Wang X, Montero Llopis P, Rudner DZ (2013). "Organization and segregation of bacterial chromosomes". Nat. Rev. Genet. 14 (3): 191–203. doi:10.1038/nrg3375. PMC 3869393. PMID 23400100.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. ^ Le TB, Imakaev MV, Mirny LA, Laub MT (2013). "High-resolution mapping of the spatial organization of a bacterial chromosome". Science. 342 (6159): 731–734. Bibcode:2013Sci...342..731L. doi:10.1126/science.1242059. PMC 3927313. PMID 24158908.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  68. ^ Wang X, Le TB, Lajoie BR, Dekker J, Laub MT, Rudner DZ (2015). "Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis". Genes Dev. 29 (15): 1661–1675. doi:10.1101/gad.265876.115. PMC 4536313. PMID 26253537.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. ^ Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R (2018). "Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins". Cell. 172 (4): 771–783.e18. doi:10.1016/j.cell.2017.12.027. PMID 29358050.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  70. ^ Hirano T (2014). "Condensins and the evolution of torsion-mediated genome organization". Trends Cell Biol. 24 (12): 727–733. doi:10.1016/j.tcb.2014.06.007. PMID 25092191.
  71. ^ Hirano T (2016). "Condensin-based chromosome organization from bacteria to vertebrates". Cell. 164 (5): 847–857. PMID 26919425.