Jump to content

Accessible ∞-category

From Wikipedia, the free encyclopedia

In mathematics, especially category theory, an accessible quasi-category is a quasi-category in which each object is an ind-object on some small quasi-category. In particular, an accessible quasi-category is typically large (not small). The notion is a generalization of an earlier 1-category version of it, an accessible category introduced by Adámek and Rosický.[1]

Definition

[edit]

An ∞-category is called accessible or more precisely -accessible if it is equivalent to the ∞-category of -ind objects on some small ∞-category for some regular cardinal .[2]

Facts

[edit]

A small ∞-category is accessible if and only if it is idempotent-complete.[3]

References

[edit]
  1. ^ Jiří Adámek, Jiří Rosický, Locally presentable and accessible categories, Cambridge University Press, (1994)
  2. ^ Lurie 2009, Definition 5.4.2.1.
  3. ^ Lurie 2009, Corollary 5.4.3.6.
  • Lurie, Jacob (2009). Higher Topos Theory. Princeton University Press. arXiv:math/0608040. ISBN 978-0-691-14048-3.
  • Charles Rezk, Generalizing accessible ∞-categories, 2021 draft

Further reading

[edit]