Jump to content

Norleucine

From Wikipedia, the free encyclopedia
Norleucine
Names
Preferred IUPAC name
(2S)-2-Aminohexanoic acid
Other names
Caprine
Glycoleucine
Identifiers
3D model (JSmol)
1721748
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.009.512 Edit this at Wikidata
EC Number
  • 210-462-7
464584
KEGG
MeSH Norleucine
RTECS number
  • RC6308000
UNII
  • InChI=1S/C6H13NO2/c1-2-3-4-5(7)6(8)9/h5H,2-4,7H2,1H3,(H,8,9)
    Key: LRQKBLKVPFOOQJ-UHFFFAOYSA-N
  • CCCCC(N)C(O)=O
Properties
C6H13NO2
Molar mass 131.175 g·mol−1
Melting point 301 °C (574 °F; 574 K) (decomposes) [3]
16 g/L at 23 °C [1]
Acidity (pKa) 2.39 (carboxyl), 9.76 (amino)[2]
Related compounds
Related Aminoacids
Norvaline (2-amino-pentanoic)
Aminocaproic acid (6-amino-hexanoic)
Leucine (2-amino-4-methyl-pentanoic)
Isoleucine (2-amino-3-methyl-pentanoic)
Lysine (2,6-diamino-hexanoic)
Related compounds
Caproic acid (hexanoic)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Norleucine[a] (abbreviated as Nle) is an amino acid with the formula CH3(CH2)3CH(NH2)CO2H. A systematic name for this compound is 2-aminohexanoic acid. The compound is an isomer of the more common amino acid leucine. Like most other α-amino acids, norleucine is chiral. It is a white, water-soluble solid.

Occurrence

[edit]

Together with norvaline, norleucine is found in small amounts in some bacterial strains where its concentration can approach millimolar. Its biosynthesis has been examined. It arises via the action of 2-isopropylmalate synthase on α-ketobutyrate. The incorporation of Nle into peptides reflects the imperfect selectivity of the associated aminoacyl-tRNA synthetase. In Miller–Urey experiments probing prebiotic synthesis of amino acids, norleucine and especially norvaline are formed.[6]

Uses

[edit]

It is nearly isosteric with methionine, even though it does not contain sulfur.[7] For this reason, norleucine has been used to probe the role of methionine in Amyloid-β peptide (AβP) the central constituent of senile plaques in Alzheimer's disease. A study showed that with the substitution of the methionine at the 35 position with norleucine the neurotoxic effects of the Aβ peptides were completely negated.[8]

See also

[edit]
  • Leucines, description of the isomers of leucine
  • norvaline, isomer of valine that has similar biochemistry to that of norleucine.

Notes

[edit]
  1. ^ The use of the name norleucine is discouraged as it is a misnomer, given than nor- is defined for an amino acid with one less methylene group than found in the proteinogenic form.[4][5]

References

[edit]
  1. ^ Sicherheitsdatenblatt Acros.[permanent dead link]
  2. ^ Dawson, R.M.C., et al., Data for Biochemical Research, Oxford, Clarendon Press, 1959.
  3. ^ Hermann Römpp, Jürgen Falbe und Manfred Regitz: Römpp Lexikon Chemie, 9. Auflage, Georg Thieme Verlag, Stuttgart 1992.
  4. ^ "Nomenclature and Symbolism For Amino Acids and Peptides". Pure and Applied Chemistry. 56 (5): 595–624. 1984. doi:10.1351/pac198456050595.
  5. ^ "Nomenclature and Symbolism for Amino Acids and Peptides – Symbols for Amino Acids – 'Nor' amino acids". iupac.qmul.ac.uk. Retrieved 31 May 2025.
  6. ^ Alvarez-Carreno, Claudia; Becerra, Arturo; Lazcano, Antonio "Norvaline and Norleucine May Have Been More Abundant Protein Components during Early Stages of Cell Evolution" Origins of Life and Evolution of Biospheres 2014, volume 43, 363-375. doi:10.1007/s11084-013-9344-3
  7. ^ Moroder, Luis "Isosteric replacement of sulfur with other chalcogens in peptides and proteins" Journal of Peptide Science 2005, volume 11, 187-214. doi:10.1002/psc.654
  8. ^ Clementi, ME & Misiti, F (Nov 2005). "Substitution of methionine 35 inhibits apoptotic effects of Abeta(31-35) and Abeta(25-35) fragments of amyloid-beta protein in PC12 cells". Med. Sci. Monit. 11 (11): BR381-5. PMID 16258386.