Herglotz's Variational Principle
In mathematics and physics, Herglotz's variational principle , named after German mathematician and physicist Gustav Herglotz , is an extension of the Hamilton's principle , where the Lagrangian L explicitly involves the action
S
{\displaystyle S}
as an independent variable, and
S
{\displaystyle S}
itself is represented as the solution of an ordinary differential equation (ODE) whose right hand side is the Lagrangian
L
{\displaystyle L}
, instead of an integration of
L
{\displaystyle L}
.[ 1] [ 2] Herglotz's variational principle is known as the variational principle for nonconservative Lagrange equations and Hamilton equations .
Suppose there is a Lagrangian
L
=
L
(
t
,
q
,
u
,
S
)
{\displaystyle L=L(t,{\boldsymbol {q}},{\boldsymbol {u}},S)}
of
2
n
+
2
{\displaystyle 2n+2}
variables, where
q
=
(
q
1
,
q
2
,
…
,
q
n
)
{\displaystyle {\boldsymbol {q}}=(q_{1},q_{2},\dots ,q_{n})}
and
u
=
(
u
1
,
u
2
,
…
,
u
n
)
{\displaystyle {\boldsymbol {u}}=(u_{1},u_{2},\dots ,u_{n})}
are
n
{\displaystyle n}
dimensional vectors, and
t
,
S
{\displaystyle t,S}
are scalar values. A time interval
[
t
0
,
t
1
]
{\displaystyle [t_{0},t_{1}]}
is fixed. Given a time-parameterized curve
q
=
q
(
t
)
{\displaystyle {\boldsymbol {q}}={\boldsymbol {q}}(t)}
, consider the ODE
{
S
˙
(
t
)
=
L
(
t
,
q
(
t
)
,
q
˙
(
t
)
,
S
(
t
)
)
,
t
∈
[
t
0
,
t
1
]
S
(
t
0
)
=
S
0
{\displaystyle {\begin{cases}{\dot {S}}(t)=L(t,{\boldsymbol {q}}(t),{\boldsymbol {\dot {q}}}(t),S(t)),&t\in [t_{0},t_{1}]\\S(t_{0})=S_{0}\end{cases}}}
When
L
(
t
,
q
,
u
,
S
)
,
q
(
t
)
,
u
(
t
)
{\displaystyle L(t,{\boldsymbol {q}},{\boldsymbol {u}},S),{\boldsymbol {q}}(t),{\boldsymbol {u}}(t)}
are all well-behaved functions, this equation allows a unique solution, and thus
S
1
:=
S
(
t
1
)
{\displaystyle S_{1}:=S(t_{1})}
is a well defined number which is determined by the curve
q
(
t
)
{\displaystyle {\boldsymbol {q}}(t)}
. Herglotz's variation problem aims to minimize
S
1
{\displaystyle S_{1}}
over the family of curves
q
(
t
)
{\displaystyle {\boldsymbol {q}}(t)}
with fixed value
q
0
{\displaystyle {\boldsymbol {q}}_{0}}
at
t
=
t
0
{\displaystyle t=t_{0}}
and fixed value
q
1
{\displaystyle {\boldsymbol {q}}_{1}}
at
t
=
t
1
{\displaystyle t=t_{1}}
, i.e. the problem
arg
min
q
:
q
(
t
0
)
=
q
0
,
q
(
t
1
)
=
q
1
S
1
[
q
]
{\displaystyle {\underset {{\boldsymbol {q}}:{\boldsymbol {q}}(t_{0})={\boldsymbol {q}}_{0},{\boldsymbol {q}}(t_{1})={\boldsymbol {q}}_{1}}{\arg \min }}S_{1}[{\boldsymbol {q}}]}
Note that, when
L
{\displaystyle L}
does not explicitly depend on
S
{\displaystyle S}
, i.e.
L
=
L
(
t
,
q
,
u
)
{\displaystyle L=L(t,{\boldsymbol {q}},{\boldsymbol {u}})}
, the above ODE system gives exactly
S
(
t
)
=
∫
t
0
t
L
(
t
,
q
(
τ
)
,
q
(
τ
)
)
d
τ
{\textstyle S(t)=\int _{t_{0}}^{t}L(t,{\boldsymbol {q}}(\tau ),{\boldsymbol {q}}(\tau )){\rm {d}}\tau }
, and thus
S
1
=
S
(
t
1
)
=
∫
t
0
t
1
L
(
t
,
q
(
t
)
,
q
(
t
)
)
d
t
{\textstyle S_{1}=S(t_{1})=\int _{t_{0}}^{t_{1}}L(t,{\boldsymbol {q}}(t),{\boldsymbol {q}}(t)){\rm {d}}t}
, which degenerates to the classical Hamiltonian action. The resulting Euler-Lagrange-Herglotz equation is
d
d
t
(
∂
L
∂
q
˙
)
−
∂
L
∂
q
=
∂
L
∂
S
∂
L
∂
q
˙
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)-{\frac {\partial L}{\partial {\boldsymbol {q}}}}={\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}}
which involves an extra term
∂
L
∂
S
∂
L
∂
q
˙
{\textstyle {\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}}
that can describe the dissipation of the system.
In order to solve this minimization problem, we impose a variation
δ
q
{\displaystyle \delta {\boldsymbol {q}}}
on
q
{\displaystyle {\boldsymbol {q}}}
, and suppose
S
(
t
)
{\displaystyle S(t)}
undergoes a variation
δ
S
(
t
)
{\displaystyle \delta S(t)}
correspondingly, then
δ
S
˙
(
t
)
=
L
(
t
,
q
(
t
)
+
δ
q
(
t
)
,
q
˙
(
t
)
+
δ
q
˙
(
t
)
,
S
(
t
)
+
δ
S
(
t
)
)
−
L
(
t
,
q
(
t
)
,
q
˙
(
t
)
,
S
(
t
)
)
=
∂
L
∂
q
δ
q
(
t
)
+
∂
L
∂
q
˙
δ
q
˙
(
t
)
+
∂
L
∂
S
δ
S
(
t
)
{\displaystyle {\begin{aligned}\delta {\dot {S}}(t)&=L(t,{\boldsymbol {q}}(t)+\delta {\boldsymbol {q}}(t),{\dot {\boldsymbol {q}}}(t)+\delta {\dot {\boldsymbol {q}}}(t),S(t)+\delta S(t))-L(t,{\boldsymbol {q}}(t),{\dot {\boldsymbol {q}}}(t),S(t))\\&={\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)+{\frac {\partial L}{\partial S}}\delta S(t)\end{aligned}}}
and since the initial condition is not changed,
δ
S
0
=
0
{\displaystyle \delta S_{0}=0}
. The above equation a linear ODE for the function
δ
S
(
t
)
{\displaystyle \delta S(t)}
, and it can be solved by introducing an integrating factor
μ
(
t
)
=
e
∫
t
0
t
∂
L
∂
S
d
t
{\displaystyle \mu (t)=\mathrm {e} ^{\int _{t_{0}}^{t}{\frac {\partial L}{\partial S}}\mathrm {d} t}}
, which is uniquely determined by the ODE
μ
˙
(
t
)
=
−
μ
(
t
)
∂
L
∂
S
,
u
(
t
0
)
=
1.
{\displaystyle {\dot {\mu }}(t)=-\mu (t){\frac {\partial L}{\partial S}},\quad u(t_{0})=1.}
By multiplying
μ
(
t
)
{\displaystyle \mu (t)}
on both sides of the equation of
δ
S
˙
{\displaystyle \delta {\dot {S}}}
and moving the term
μ
(
t
)
∂
L
∂
S
δ
S
(
t
)
{\textstyle \mu (t){\frac {\partial L}{\partial S}}\delta S(t)}
to the left hand side, we get
μ
(
t
)
δ
S
˙
(
t
)
−
μ
(
t
)
∂
L
∂
S
δ
S
(
t
)
=
μ
(
t
)
(
∂
L
∂
q
δ
q
(
t
)
+
∂
L
∂
q
˙
δ
q
˙
(
t
)
)
.
{\displaystyle \mu (t)\delta {\dot {S}}(t)-\mu (t){\frac {\partial L}{\partial S}}\delta S(t)=\mu (t)\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\right).}
Note that, since
μ
˙
(
t
)
=
−
μ
(
t
)
∂
L
∂
S
{\textstyle {\dot {\mu }}(t)=-\mu (t){\frac {\partial L}{\partial S}}}
, the left hand side equals to
μ
(
t
)
δ
S
˙
(
t
)
+
μ
˙
(
t
)
δ
S
(
t
)
=
d
(
μ
(
t
)
δ
S
(
t
)
)
d
t
{\displaystyle \mu (t)\delta {\dot {S}}(t)+{\dot {\mu }}(t)\delta S(t)={\frac {\mathrm {d} (\mu (t)\delta S(t))}{\mathrm {d} t}}}
and therefore we can do an integration of the equation above from
t
=
t
0
{\displaystyle t=t_{0}}
to
t
=
t
1
{\displaystyle t=t_{1}}
, yielding
μ
(
t
1
)
δ
S
1
−
μ
(
t
0
)
δ
S
0
=
∫
t
0
t
1
μ
(
t
)
(
∂
L
∂
q
δ
q
(
t
)
+
∂
L
∂
q
˙
δ
q
˙
(
t
)
)
d
t
{\displaystyle \mu (t_{1})\delta S_{1}-\mu (t_{0})\delta S_{0}=\int _{t_{0}}^{t_{1}}\mu (t)\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\right)\mathrm {d} t}
where the
δ
S
0
=
0
{\displaystyle \delta S_{0}=0}
so the left hand side actually only contains one term
μ
(
t
1
)
δ
S
1
{\displaystyle \mu (t_{1})\delta S_{1}}
, and for the right hand side, we can perform the integration-by-part on the
∂
L
∂
q
˙
δ
q
˙
(
t
)
{\textstyle {\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)}
term to remove the time derivative on
δ
q
{\textstyle \delta {\boldsymbol {q}}}
:
∫
t
0
t
1
μ
(
t
)
(
∂
L
∂
q
δ
q
(
t
)
+
∂
L
∂
q
˙
δ
q
˙
(
t
)
)
d
t
=
∫
t
0
t
1
μ
(
t
)
∂
L
∂
q
δ
q
(
t
)
d
t
+
∫
t
0
t
1
μ
(
t
)
∂
L
∂
q
˙
δ
q
˙
(
t
)
d
t
=
∫
t
0
t
1
μ
(
t
)
∂
L
∂
q
δ
q
(
t
)
d
t
+
μ
(
t
1
)
∂
L
∂
q
˙
δ
q
(
t
1
)
⏟
=
0
−
μ
(
t
0
)
∂
L
∂
q
˙
δ
q
(
t
0
)
⏟
=
0
−
∫
t
0
t
1
d
d
t
(
μ
(
t
)
∂
L
∂
q
˙
)
δ
q
(
t
)
d
t
=
∫
t
0
t
1
μ
(
t
)
∂
L
∂
q
δ
q
(
t
)
d
t
−
∫
t
0
t
1
d
d
t
(
μ
(
t
)
∂
L
∂
q
˙
)
δ
q
(
t
)
d
t
=
∫
t
0
t
1
μ
(
t
)
∂
L
∂
q
δ
q
(
t
)
d
t
−
∫
t
0
t
1
(
μ
˙
(
t
)
∂
L
∂
q
˙
+
μ
(
t
)
d
d
t
∂
L
∂
q
˙
)
δ
q
(
t
)
d
t
=
∫
t
0
t
1
μ
(
t
)
∂
L
∂
q
δ
q
(
t
)
d
t
−
∫
t
0
t
1
(
−
μ
(
t
)
∂
L
∂
S
∂
L
∂
q
˙
+
μ
(
t
)
d
d
t
∂
L
∂
q
˙
)
δ
q
(
t
)
d
t
=
∫
t
0
t
1
μ
(
t
)
(
∂
L
∂
q
+
∂
L
∂
S
∂
L
∂
q
˙
−
d
d
t
∂
L
∂
q
˙
)
_
δ
q
(
t
)
d
t
,
{\displaystyle {\begin{aligned}&\int _{t_{0}}^{t_{1}}\mu (t)\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\right)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t+\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t+\mu (t_{1}){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\underbrace {\delta {\boldsymbol {q}}(t_{1})} _{=0}-\mu (t_{0}){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\underbrace {\delta {\boldsymbol {q}}(t_{0})} _{=0}-\int _{t_{0}}^{t_{1}}{\frac {\mathrm {d} }{\mathrm {d} t}}\left(\mu (t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t-\int _{t_{0}}^{t_{1}}{\frac {\mathrm {d} }{\mathrm {d} t}}\left(\mu (t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t-\int _{t_{0}}^{t_{1}}\left({\dot {\mu }}(t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}+\mu (t){\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t-\int _{t_{0}}^{t_{1}}\left(-\mu (t){\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}+\mu (t){\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\underline {\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}+{\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}-{\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)}}\delta {\boldsymbol {q}}(t)\mathrm {d} t,\end{aligned}}}
and when
S
1
{\displaystyle S_{1}}
is minimized,
δ
S
1
=
0
{\displaystyle \delta S_{1}=0}
for all
δ
q
{\displaystyle \delta {\boldsymbol {q}}}
, which indicates that the underlined term in the last line of the equation above has to be zero on the entire interval
[
t
0
,
t
1
]
{\displaystyle [t_{0},t_{1}]}
, this gives rise to the Euler-Lagrange-Herglotz equation.
One simple one-dimensional (
n
=
1
{\displaystyle n=1}
) example[ 3] is given by the Lagrangian
L
(
t
,
x
,
x
˙
,
S
)
=
1
2
m
x
˙
2
−
V
(
x
)
−
γ
S
{\displaystyle L(t,x,{\dot {x}},S)={\frac {1}{2}}m{\dot {x}}^{2}-V(x)-\gamma S}
The corresponding Euler-Lagrange-Herglotz equation is given as
d
d
t
(
m
x
˙
)
+
V
′
(
x
)
=
−
γ
x
˙
,
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}(m{\dot {x}})+V'(x)=-\gamma {\dot {x}},}
which simplifies into
m
x
¨
=
−
V
′
(
x
)
−
γ
x
˙
.
{\displaystyle m{\ddot {x}}=-V'(x)-\gamma {\dot {x}}.}
This equation describes the damping motion of a particle in a potential field
V
{\displaystyle V}
, where
γ
{\displaystyle \gamma }
is the damping coefficient.
^ Gaset, Jordi; Lainz, Manuel; Mas, Arnau; Rivas, Xavier (2022-11-30), "The Herglotz variational principle for dissipative field theories" , Geometric Mechanics , 01 (2): 153– 178, arXiv :2211.17058 , doi :10.1142/S2972458924500060 , retrieved 2025-05-06
^ Georgieva, Bogdana (2012). The Variational Principle of Hergloz and Related Results (Report). GIQ. doi :10.7546/giq-12-2011-214-225 .
^ "Tesis of Manuel Lainz" (PDF) . www.icmat.es . Archived from the original (PDF) on 2024-04-19. Retrieved 2025-05-06 .