Jump to content

Bifidobacterium animalis lactis

From Wikipedia, the free encyclopedia

Bifidobacterium animalis lactis
Scientific classification Edit this classification
Domain: Bacteria
Kingdom: Bacillati
Phylum: Actinomycetota
Class: Actinomycetes
Order: Bifidobacteriales
Family: Bifidobacteriaceae
Genus: Bifidobacterium
Species:
Subspecies:
B. a. lactis
Trinomial name
Bifidobacterium animalis lactis
(Meile et al., 1997) Masco et al., 2004[1]
Synonyms[1]
  • Bifidobacterium lactis Meile et al., 1997

Bifidobacterium animalis subsp. lactis is a subspecies of the bacterium Bifidobacterium animalis. It lives within the mammalian colon and can be transmitted between animals. Bifidobacterium animalis subspecies lactis was initially named Bifidobacterium lactis when it was first isolated from fermented milk in 1997.[2]

Biology

[edit]

Bifidobacterium animalis subspecies lactis is a gram-positive, rod-shaped bacterium. It is non-motile and unable to form spores. Bifidobacterium animalis subspecies lactis lives within the guts of healthy adults and infants[3][4] and is therefore part of the gut microbiome. This bacterium shows resistance towards the harsh conditions within the gastrointestinal tract, which could be due to the production of exopolysaccharides.[5]

Health benefits

[edit]

Bifidobacterium animalis subspecies lactis is commonly used as a probiotic and is added to dairy products such as yogurt, buttermilk, cottage cheese and other cheeses.[6] It grows well in milk[7] which makes it suitable for addition to dairy products. Also, it is resistant to acid[8] and has a high oxygen tolerance,[9] which allows the bacterium to survive after consumption whilst travelling through the gastrointestinal tract.

Using Bifidobacterium animalis subspecies lactis as a probiotic can bring multiple health benefits. For example, the strain HN019 can be used to treat constipation by increasing how often bowel movements occur.[10] The strain UABla-12 decreases symptom severity and abdominal pain of adults with irritable bowel syndrome (IBS) symptoms.[11] Similarly, the strain Bi-07 decreases bloating in patients with the following functional bowel disorders: non-constipation-IBS, functional diarrhoea and functional bloating.[12]

The strain HN019 can also strengthen the immune system by increasing the amounts of total, helper (CD4+) and activated (CD25+) T lymphocytes and natural killer cells.[13] These are involved in the response to pathogens, therefore this bacterium can help to clear infections more quickly. Also, the strain 420 can be used for weight loss as it decreases abdominal fat, therefore decreasing waist circumference, and also causes less food to be eaten.[14]

When Bifidobacterium animalis subspecies lactis is used as a probiotic, it can also alter the microbiota within various areas of the body. The strain A6 can lead to an increased amount of butyrate produced by intestinal bacteria such as Clostridium, Eubacterium, Roseburia and Butyrivibrio. This can increase the amount of butyrate present in the serum, muscles and bones, therefore combatting bone and muscle loss.[15] Furthermore, the administration of Bifidobacterium animalis subspecies lactis Bl-04 with Lactobacillus acidophilus NCFM can alter the characteristic tumour microbiota of patients with colorectal cancer. The tumour microbiota includes an increased diversity of microbes and increased amounts of taxa such as Fusobacterium, Selenomonas and Peptostreptococcus. The consumption of these probiotics causes an increase in butyrate-producing bacteria, such as Faecalibacterium and Clostridiales species.[16]

Antibiotic resistance

[edit]

The bacterial strains used as probiotics cannot have antibiotic resistance genes that could be transferred to other bacteria,[17] such as through horizontal gene transfer, as these genes could be transferred to pathogens within the body. Therefore, if these pathogens were targeted using antibiotics that they are resistant to, the pathogens would survive. Many strains of Bifidobacterium animalis subspecies lactis are resistant to the antibiotic tetracycline, and this is caused by possession of the tet(W) gene.[18] There is no evidence of this gene being transferred between bacteria,[19][20] even after attempts to force translocation of the tet(W) gene through conjugation,[21] therefore Bifidobacterium animalis subspecies lactis is safe for use as a probiotic.

Enzyme activity

[edit]

For Bifidobacterium animalis subspecies lactis cell extracts, aminopeptidase activities increase and α- and β-galactosidase activities increased by 100x when the cells are grown in milk compared to in de Man, Rogosa and Sharpe (MRS) broth. Cell extracts are able to fully hydrolyse casein fractions, with α-casein being hydrolysed slower than β- and κ-caseins.[22]

Bifidobacterium animalis subspecies lactis possesses an intracellular endopeptidase as a monomeric enzyme. This is endopeptidase O (PepO), and is effective against substrates with a minimum of 5 amino acid residues, like met-enkephalin, and can also hydrolyse larger substrates, like αs1-casein(f1-23). However, this endopeptidase is unable to hydrolyse glycomacropeptide, which has a length of 64 amino acids.[22]

References

[edit]
  1. ^ a b "Bifidobacterium animalis subsp. lactis (Meile et al., 1997) Masco et al., 2004". Global Biodiversity Information Facility. Retrieved 14 July 2025.
  2. ^ Meile, Leo; Ludwig, Wolfgang; Rueger, Ursula; Gut, Christina; Kaufmann, Peter; Dasen, Gottfried; Wenger, Susanne; Teuber, Michael (1997-01-01). "Bifidobacterium lactis sp. nov., a Moderately Oxygen Tolerant Species Isolated from Fermented Milk". Systematic and Applied Microbiology. 20 (1): 57–64. Bibcode:1997SyApM..20...57M. doi:10.1016/S0723-2020(97)80048-3. ISSN 0723-2020.
  3. ^ Turroni, Francesca; Foroni, Elena; Pizzetti, Paola; Giubellini, Vanessa; Ribbera, Angela; Merusi, Paolo; Cagnasso, Patrizio; Bizzarri, Barbara; de'Angelis, Gian Luigi; Shanahan, Fergus; van Sinderen, Douwe; Ventura, Marco (2009-03-15). "Exploring the Diversity of the Bifidobacterial Population in the Human Intestinal Tract". Applied and Environmental Microbiology. 75 (6): 1534–1545. Bibcode:2009ApEnM..75.1534T. doi:10.1128/AEM.02216-08. PMC 2655441. PMID 19168652.
  4. ^ Wall, Rebecca; Hussey, Seamus Gerard; Ryan, C Anthony; O'Neill, Martin; Fitzgerald, Gerald; Stanton, Catherine; Ross, R Paul (2008-01-01). "Presence of two Lactobacillus and Bifidobacterium probiotic strains in the neonatal ileum". The ISME Journal. 2 (1): 83–91. Bibcode:2008ISMEJ...2...83W. doi:10.1038/ismej.2007.69. ISSN 1751-7362. PMID 18059489.
  5. ^ Leivers, Shaun; Hidalgo-Cantabrana, Claudio; Robinson, Glenn; Margolles, Abelardo; Ruas-Madiedo, Patricia; Laws, Andrew P. (2011-12-13). "Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster". Carbohydrate Research. 346 (17): 2710–2717. doi:10.1016/j.carres.2011.09.010. hdl:10261/51271. ISSN 0008-6215. PMID 22000767.
  6. ^ Paraskevakos, George (2021-11-22). "Bifidobacterium lactis". International Probiotics Association. Retrieved 2025-07-07.
  7. ^ Quigley, E. M. M. (2017-01-01), Floch, Martin H.; Ringel, Yehuda; Allan Walker, W. (eds.), "Bifidobacterium animalis spp. lactis", The Microbiota in Gastrointestinal Pathophysiology, Boston: Academic Press, pp. 127–130, doi:10.1016/b978-0-12-804024-9.00013-6, ISBN 978-0-12-804024-9, retrieved 2025-07-07
  8. ^ Matsumoto, Mitsuharu; Ohishi, Hifumi; Benno, Yoshimi (2004-05-15). "H+-ATPase activity in Bifidobacterium with special reference to acid tolerance". International Journal of Food Microbiology. 93 (1): 109–113. doi:10.1016/j.ijfoodmicro.2003.10.009. ISSN 0168-1605. PMID 15135587.
  9. ^ Masco, Liesbeth; Ventura, Marco; Zink, Ralf; Huys, Geert; Swings, Jean (2004). "Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov". International Journal of Systematic and Evolutionary Microbiology. 54 (4): 1137–1143. doi:10.1099/ijs.0.03011-0. ISSN 1466-5034. PMID 15280282.
  10. ^ Ibarra, Alvin; Latreille-Barbier, Mathilde; Donazzolo, Yves; Pelletier, Xavier; Ouwehand, Arthur C. (2018-05-04). "Effects of 28-day Bifidobacterium animalis subsp. lactis HN019 supplementation on colonic transit time and gastrointestinal symptoms in adults with functional constipation: A double-blind, randomized, placebo-controlled, and dose-ranging trial". Gut Microbes. 9 (3): 236–251. doi:10.1080/19490976.2017.1412908. ISSN 1949-0976. PMC 6219592. PMID 29227175.
  11. ^ Martoni, Christopher J.; Srivastava, Shalini; Leyer, Gregory J. (2020-01-30). "Lactobacillus acidophilus DDS-1 and Bifidobacterium lactis UABla-12 Improve Abdominal Pain Severity and Symptomology in Irritable Bowel Syndrome: Randomized Controlled Trial". Nutrients. 12 (2): 363. doi:10.3390/nu12020363. ISSN 2072-6643. PMC 7071206. PMID 32019158.
  12. ^ Ringel-Kulka, Tamar; Palsson, Olafur S.; Maier, Danielle; Carroll, Ian; Galanko, Joseph A.; Leyer, Gregory; Ringel, Yehuda (July 2011). "Probiotic Bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 Versus Placebo for the Symptoms of Bloating in Patients With Functional Bowel Disorders: A Double-blind Study". Journal of Clinical Gastroenterology. 45 (6): 518–525. doi:10.1097/MCG.0b013e31820ca4d6. ISSN 0192-0790. PMC 4372813. PMID 21436726.
  13. ^ Gill, Harsharnjit S; Rutherfurd, Kay J; Cross, Martin L; Gopal, Pramod K (2001-12-01). "Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019123". The American Journal of Clinical Nutrition. 74 (6): 833–839. doi:10.1093/ajcn/74.6.833. ISSN 0002-9165. PMID 11722966.
  14. ^ Stenman, Lotta K.; Lehtinen, Markus J.; Meland, Nils; Christensen, Jeffrey E.; Yeung, Nicolas; Saarinen, Markku T.; Courtney, Michael; Burcelin, Rémy; Lähdeaho, Marja-Leena; Linros, Jüri; Apter, Dan; Scheinin, Mika; Smerud, Hilde Kloster; Rissanen, Aila; Lahtinen, Sampo (2016-11-01). "Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults—Randomized Controlled Trial". eBioMedicine. 13: 190–200. doi:10.1016/j.ebiom.2016.10.036. ISSN 2352-3964. PMC 5264483. PMID 27810310.
  15. ^ Chen, Ming; Li, Yi; Zhai, Zhengyuan; Wang, Hui; Lin, Yuan; Chang, Feifan; Ge, Siliang; Sun, Xinyu; Wei, Wei; Wang, Duanyang; Zhang, Mingming; Chen, Ruijing; Yu, Haikuan; Feng, Taojin; Huang, Xiang (2025-02-25). "Bifidobacterium animalis subsp. lactis A6 ameliorates bone and muscle loss via modulating gut microbiota composition and enhancing butyrate production". Bone Research. 13 (1) 28: 1–19. doi:10.1038/s41413-024-00381-1. ISSN 2095-6231. PMC 11862215. PMID 40000617.
  16. ^ Hibberd, Ashley A.; Lyra, Anna; Ouwehand, Arthur C.; Rolny, Peter; Lindegren, Helena; Cedgård, Lennart; Wettergren, Yvonne (2017-07-01). "Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention". BMJ Open Gastroenterology. 4 (1): e000145. doi:10.1136/bmjgast-2017-000145. ISSN 2054-4774. PMC 5609083. PMID 28944067.
  17. ^ Morovic, Wesley; Roos, Paige; Zabel, Bryan; Hidalgo-Cantabrana, Claudio; Kiefer, Anthony; Barrangou, Rodolphe (2018-11-15). "Transcriptional and Functional Analysis of Bifidobacterium animalis subsp. lactis Exposure to Tetracycline". Applied and Environmental Microbiology. 84 (23): e01999–18. Bibcode:2018ApEnM..84E1999M. doi:10.1128/AEM.01999-18. PMC 6238047. PMID 30266728.
  18. ^ Gueimonde, Miguel; Flórez, Ana Belén; van Hoek, Angela H. A. M.; Stuer-Lauridsen, Birgitte; Strøman, Per; de los Reyes-Gavilán, Clara G.; Margolles, Abelardo (2010-05-15). "Genetic Basis of Tetracycline Resistance in Bifidobacterium animalis subsp. lactis". Applied and Environmental Microbiology. 76 (10): 3364–3369. Bibcode:2010ApEnM..76.3364G. doi:10.1128/AEM.03096-09. PMC 2869156. PMID 20348299.
  19. ^ Nøhr-Meldgaard, Katrine; Struve, Carsten; Ingmer, Hanne; Agersø, Yvonne (2021-07-15). "The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species". Frontiers in Microbiology. 12. doi:10.3389/fmicb.2021.658943. ISSN 1664-302X. PMC 8319848. PMID 34335493.
  20. ^ Ban, O-Hyun; Bang, Won Yeong; Jeon, Hyeon Ji; Jung, Young Hoon; Yang, Jungwoo; Kim, Dong Hyun (2023). "Potential of Bifidobacterium lactis IDCC 4301 isolated from breast milk-fed infant feces as a probiotic and functional ingredient". Food Science & Nutrition. 11 (4): 1952–1964. doi:10.1002/fsn3.3230. ISSN 2048-7177. PMC 10084967. PMID 37051343.
  21. ^ Naghizadeh Raeisi, Shahram; Ghoddusi, Hamid B.; Juncker Boll, Erik; Farahmand, Nasim; Stuer-Lauridsen, Birgitte; Johansen, Eric; Sutherland, Jane P.; Ouoba, Labia Irène I. (2018-12-01). "Antimicrobial susceptibility of bifidobacteria from probiotic milk products and determination of the genetic basis of tetracycline resistance in Enterococcus species after in vitro conjugation with Bifidobacterium animalis subsp. lactis". Food Control. 94: 205–211. doi:10.1016/j.foodcont.2018.07.016. ISSN 0956-7135.
  22. ^ a b Janer, C.; Arigoni, F.; Lee, B. H.; Peláez, C.; Requena, T. (2005-12-01). "Enzymatic Ability of Bifidobacterium animalis subsp. lactis To Hydrolyze Milk Proteins: Identification and Characterization of Endopeptidase O". Applied and Environmental Microbiology. 71 (12): 8460–8465. Bibcode:2005ApEnM..71.8460J. doi:10.1128/AEM.71.12.8460-8465.2005. PMC 1317388. PMID 16332835.