Ajtai–Komlós–Tusnády theorem
Appearance
(Redirected from AKT optimal matching theorem)
The Ajtai–Komlós–Tusnády theorem (also known as the AKT optimal matching theorem) is a result in probabilistic combinatorics. Given two random, distinct sets of points and in the unit square , the theorem gives then upper and lower bounds for the minimal total distance needed to match the points in one set to those in the other.
The theorem was proven in 1984 by the Hungarian mathematicians Miklós Ajtai, János Komlós, and Gábor Tusnády.[1][2]
Statement
[edit]Let and be two independent random vectors, uniformly distributed over (i.e., ). Let denote the symmetric group, and the Euclidean norm on .
Then,
where are real constants.
Remarks
[edit]- The notation means
- see Landau notation.
- The theorem implies that
- with high probability.
Bibliography
[edit]- Bobkov, Sergey; Ledoux, Michel (2019). "A simple Fourier analytic proof of the AKT optimal matching theorem". Annals of Applied Probability. 31 (6). arXiv:1909.06193. doi:10.1214/20-AAP1656.
- Ajtai, M.; Komlós, János; Tusnády, G. (1984). "On optimal matchings". Combinatorica. 4: 259–264. doi:10.1007/BF02579135.
- Talagrand, Michel (1994). "Matching theorems and empirical discrepancy computations using majorizing measures". Journal of the American Mathematical Society. 7: 455–537. doi:10.1090/S0894-0347-1994-1227476-X.
References
[edit]- ^ Ajtai, M.; Komlós, János; Tusnády, G. (1984). "On optimal matchings". Combinatorica. 4: 259–264. doi:10.1007/BF02579135.
- ^ Bobkov, Sergey; Ledoux, Michel (2019). "A simple Fourier analytic proof of the AKT optimal matching theorem". Annals of Applied Probability. 31 (6). arXiv:1909.06193. doi:10.1214/20-AAP1656.